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ABSTRACT

Structural analyses are developed to determine the linear elastic and the geo-

metrically nonlinear elastic response of an internally pressurized, orthogonally stiff-

ened, composite material cylindrical shell. The configuration is a long circular cylin-

drical shell stiffened on the inside by a regular arrangement of identical stringers

and identical rings. Periodicity permits the analysis of a unit cell model consisting

of a portion of the shell wall centered over one stringer-ring joint. The stringer-

ring-shell joint is modeled in an idealized manner; the stiffeners are mathematically

permitted to pass through one another without contact, but do interact indirectly

through their mutual contact with the shell at the joint. Discrete beams models of

the stiffeners include a stringer with a symmetrical cross section and a ring with

either a symmetrical or an asymmetrical open section. Mathematical formulations

presented for the linear response include the effect of transverse shear deformations

and the effect of warping of the ring's cross section due to torsion. These effects

are important when the ring has an asymmetrical cross section because the loss of

symmetry in the problem results in torsion and out-of-plane bending of the ring,

and a concomitant rotation of the joint at the stiffener intersection about the cir-

cumferential axis. Data from a composite material crown panel typical of a large

transport fuselage structure are used for two numerical examples. Although the

inclusion of geometric nonlinearity reduces the "pillowing" of the shell, it is found

that bending is localized to a narrow region near the stiffener. Including warping

deformation of the ring into the analysis changes the sense of the joint rotation.

Transverse shear deformation models result in increased joint flexibility.
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CHAPTER 1

INTRODUCTION

1.1 COMPOSITE MATERIALS IN PRIMARY STRUCTURES

Composite materials are being used increasingly for variety of structural applica-

tions in aerospace engineering and other related weight sensitive applications where high

strength-to-weight and stiffness-to-weight ratios are required. The success of composite

materials results from the ability to make use of the outstanding strength, stiffness and

low specific gravity of fibres such as glass, graphite or Kevlar. When superior specific

mechanical properties are combined with the unique flexibility in design and the ease of

fabrication that composites offer, it is no wonder that their growth rate has far surpassed

that of other materials.

Development of the state-of-the-art manufacturing techniques has made it possible

to replace complicated structural components/assemblies by single co-cured or adhesively

bonded composite parts, thereby minimizing the number of fasteners to be used in a

structure, and hence, enhancing the structural integrity. While the use of bonded com-

posite structures as secondary and tertiary load carrying members has been widespread

in aerospace industry, their use as primary load carrying members is still very limited.

Most of the applications of composites as primary structural components have been in the

area of fabrication of empennage or control surfaces of an aircraft. Thus, the potential of

composite materials as a primary load carrying structure, such as fuselage of an aircraft,

has not been fully realized yet. One of the main reasons for this could be the lack of

confidence of aerospace industry in utilizing composite materials for fuselage manufactur-

ing, which, in turn, could be due to the lack of a full scale analysis, design, and testing



to qualify compositematerialsfor usein the fuselageof both civil and military transport

aircraft.

1.2 FUSELAGE LOADS AND DESIGN

As described in the text by Niu 1, the loads affecting fuselage design of a transport

aircraft can result from flight maneuvers, landings, cabin pressurization and ground han-

dling, etc. Fuselage (or cabin) pressurization of a transport aircraft induces hoop and

longitudinal stresses in the fuselage. The fuselage internal pressure depends on the cruise

altitude and the comfort desired for the flight crew and/or passengers, and can cause a

pressure differential of up to 10 psi across the fuselage skin. An unstiffened, or monocoque,

fuselage would carry this internal pressure load as a shell in membrane response, like a

pressure vessel. However, internal longitudinal and transverse stiffeners are necessary to

carry the loads resulting from flight maneuvers, landings, and ground handling, etc. The

longitudinal stiffeners, called stringers or longerons, carry the major portion of the fuse-

lage bending moment. The transverse stiffeners, called frames or rings, are spaced at

regular intervals along the length of the fuselage to prevent buckling of the longitudinals

and maintain cross-sectional shape of the fuselage. The presence of these internal stiffen-

ers introduces the following two important aspects in the fuselage design of a transport

aircraft:

1. Ttle stiffeners, i.e. stringers and rings, are attached to the fuselage skin by some

kind of fasteners, or perhaps bonded to it. Thus, there is a transmission of loads between

the skin and the stiffeners all along their attachment lines, and at the stiffeners' intersection

a local concentration of the interacting loads due to joint stiffness occurs. Understanding of

the load transfer mechanism in the stiffener-to-skin joints under pressurization is necessary

for determining the load capacity of these joints.

2



2. The presence of internal stiffeners, particularly the presence of frames or rings,

prevents expansion of the fuselage skin as a membrane, and the skin bulges, or "pillows",

between the stiffeners under the action of the internal presure as shown in Fig. 1.1. Hence,

where the skin is restrained against its expansion as a membrane along the stiffeners, a

bending boundary layer is formed.

1.3 STIFFENER-TO-SKIN JOINTS

The design of stiffener-to-skin joints was cited by Jackson et al._" as one of the major

technology issues in utilizing graphite/epoxy composites in the fuselage of a large transport

aircraft. In order to realize the full potential of advanced composites in lightweight aircraft

structure, it is particularly important to ensure that the joints, either adhesively bonded

or mechanically fastened, do not impose a reduced efficiency on the structure and should

be cost effective as well. The use of graphite/epoxy composites in conjunction with metal

fasteners in conventional, mechanically fastened joints is a critical design factor. Improper

coupling of joint materials can cause serious corrosion problems to metals because of the

difference in electric potential between these metals and graphite. In other words, insuring

the galvanic compatibility of fastener materials with graphite composites is essential to

avoid corrosion problems ill the structure 3'4.

It has been established that materials such as titanium, corrosion-resistant steels,

nickel and cobalt alloys can be coupled to graphite composites without such corrosive

effects. In contrast, aluminum, magnesium and stainless steel are most adversely affected

because of the difference in electric potential between these materials and graphite, and

their use would lead to serious corrosion problems in the structure. However, fasteners

made of materials such as titanium, corrosion-resistant steels, nickel and cobalt alloys

are much more expensive than the more conventional fastner materials like aluminum,

magnesium and stainless steel, etc. With thousands of fasteners, e.g., rivets, bolts, nuts,



:i:i:i:i:i:i:i:i:i

_iiiiiiiiiiiiiliiiii!iiiii!ii!iiiiiiiiiiiiiiiiiii:i

iii!iiii!i!i!!!!!!i!iiiiiiiiiiiiiiiiiiiii!i!i!!!iiiiii
oOoO.°°_°°°o°°.O°_oOoOoOoO_OoO_Oo_O_°°.o°_°o.°O°°o,,'

_°Oo°oO°Oo°°o°°°OoOoOo°oOo_oOoOoO_°_o°-°OoO°O.OoO°',

4



etc. required to assemble stiffeners to the fuselage skin for a large transport aircraft.

mechanically fastened joints using corrosion-resistant materials are costly and may offset

the advantages of using high strength-to-weight composite materials in structures where

assembly of two or more components is imperative. Niu 1 has pointed out that, in general,

adhesively bonded joints are more cost efficient for lightly loaded joints, and mechanically

fastened joints are more cost efficient for highly loaded joints. Thus, if the loads transferred

between the stiffeners and the fuselage skin are small enough, the adhesively bonded joints

can be used thereby eliminating all or most fasteners. Elimination of fasteners, or even

a reduction in the number of fasteners, would enhance the use of advanced composite

materials in fuselage of a transport aircraft. As an example, a graphite-epoxy crown panel

for the fuselage of a large transport aircraft was recently fabricated without fasteners

by co-curing the stringers and co-bonding the rings, or frames, to the skin 'S'6. Also, the

curved graphite-epoxy fuselage frames were manufactured by resin transfer molding into

two-dimensional braided preforms of net structural shape r. Clearly, the strength of the

bond line is a critical issue for these primary fuselage structures made from advanced

composite materials.

1.4 CONTACT PROBLEMS

As described in the monograph by Grigoluk and Tolkachev s, contact (or load dif-

fusion) problems occur in the theory of plates and shells when dealing with interaction

of plates and shells with rigid and elastic bodies (stamps), stiffening ribs/stiffeners, and

with plate-shell contacts. The class of contact problems can also include laminated plates

and shells, if one introduces reactions of interaction between layers. Furthermore, they

pointed out that the selection of the theory used to formulate the given contact problem

may also influence the final results.



Thestudyof loaddiffusionin the stiffener-to-skinjoints of anorthogonallystiffened

shellsubjectedto internalpressureisalsoa shellcontact problem. The type of structural

theory used to model the discrete elements, i.e., the shell, the stringer, and the ring,

influences the distribution of the interacting loads at the shell-stiffener interface. A brief

literature survey on the work done in the area of contact problems is presented in the

remainder of this section.

Contact problems have always attracted scientists, academicians and designers alike

because of their inherent importance for any structure analysis involving an assembly of

two or more components. The first work is by Melan 9, who considered a semi-infinite

plate with all infinite stiffener attached to its edge. A concentrated longitudinal force is

applied to the stiffener. In 1932, Melan obtained a closed form solution for tangential

forces in the plate along the line of stiffener attachment and also for the axial force in the

stiffener. Buell 1°, in 1948, analyzed a semi-infinite plate to which a selni-infinite stiffener

is attached, loaded at the origin with a longitudinal force. An infinite series solution for

the airy stress function reduced the problem to an infinite set of algebraic equations, and

Buell obtained a numerical solution by reducing the set to six equations in six unknowns.

A solution to Buell's problem and an identical problem for an infinite plate were obtained

by Koiter 11 in 1955. Using as a Green's function the solution with a concentrated force,

Koiter obtained a singular integral equation for the interacting tangential force between

the stiffener and the plate. Through a series of complex mathematical steps using Mellin

transformation, Koiter found the longitudinal force in the stiffener as an infinite series,

Koiter's solution can serve as a criterion of exactness of Buell's numerical solution.

The load diffusion problem for a finite stiffener attached to an infinite plate was first

solved by Benscooter 12 in 1949. He obtained an integro-differential equation, of the same

form as the Prandtl equation for the distribution of aerodynamic forces in aircraft wing

6



(alsoknownas monoplaneequation),with stiffeneraxial forceasan unknownvariable.

First, Benscooterexpandedthe variableinto a seriesof Chebyshev polynomials of the

second kind to obtain the discretized equations, and then solved them for unknown coef-

ficients. Budiansky and Wu 13 extended Melan's problem for the case where the stiffener

is rivetted to the plate at discrete points with constant spacing. Subsequent to some of

these landmark works, numerous authors have studied the load diffusion problem between

sheet and stiffener. An extensive biblography on the subject is given in Chapter 3 of Ref.

[8].

As for circular cylindrical shells stiffened by longtudinal stiffeners, studies are few.

Fischer 14 was the first to analyze an infinitely long circular cylindrical shell reinforced by

equally spaced, continuously attached longitudinal stiffeners, each stiffener being loaded by

a single concentrated longitudinal force (a counterpart of Melan's plate problem). Fischer

accounted for bending of stiffeners and obtained a solution for the membrane shearing

stress transmitted by a loaded stringer to the shell, and the axial stress developed within

the stringer. Grigoluk and Tolkachev s also analyzed this problem but did not take into

account the bending of stiffeners. A detailed biblography on some other types of shell

contact problems can be found in Chapter 8 of Ref. [8].

1.5 PRESSURIZED, STIFFENED SHELLS

A literature survey on the work done in the area of stiffened shells under internal

pressure suggests that in the past, only a few studies have been carried out in this area. In

1952, Flfigge 1_ studied the stress problems in pressurized cabins of high altitude aircraft

by dividing it into two problems. First problem was concerned with curved walls of the

cabin or pressure vessel, hence was called shell problem. The second problem, called the

plate problem, was concerned with small rectangular panels of the cabin wall, framed

by stiffeners. Of interest here are the former problems where Fl'Sgge obtained analytical

7



expressionsfor stressesin the shellandthe stiffeners(i.e., stringerand ring) for a single

cylindermodel,andadoublecylindermodel,usinga smearedstiffnessapproach.In 1958,

Houghton16computedthe stressesoccuringin stringerreinforcedpressurizedcylindrical

shellsdue to restrainingactionof theflames. Hepresentedresultsshowingthe effectof

variationof framepitch andstiffnesson thebendingmomentandshearforcein the skins,

and the hoopstressin the skinsbetween the frames. Houghton's analysis was limited

to metallic components, and did not take into account the eccentricity of stiffeners with

respect to the skin. Pressure-cabin problems are described in Chapter 9 of Williams 17

1960 text on aircraft structures. In the preface Williams justified the need for a chapter

devoted to this subject on the importance of high speed civil air-transport, The effect of

flames and bulkheads on the stresses in a cabin shell was considered in some detail, and

it was shown how the presence of reinforcing stringers de-localizes the constricting effect

of a frame or bulkhead. Williams analyses were also limited to metallic components, and

did not take into account the eccentricity of stiffeners with respect to the skin. Wang is, in

1970, carried out a discrete analysis of a metallic, orthogonally stiffened cylindrical shell

subjected to internal pressure. Stiffener eccentricity, the normal component of interacting

load between shell and stiffeners, and closed-end pressure vessel effects were taken into

account. In 1985, Wang and Hsu 19 improved the earlier work by including in the analysis,

a composite material shell wall, interacting shear forces between the skin and stiffeners,

and a direct accounting of closed-end pressure vessel effects. In both of these works, the

results were obtained for a linear elastic response and symmetric stiffeners. Skin-stiffener

interactions were computed but results for them were not presented. In 1985, Boitnott 2°

examined by experiment and analysis the pressure pillowing of a cylindrical composite

panel clamped in a stiff fixture. Boitnott's geometrically nonlinear analysis correlated

well with the experiments when panel slip fi'om the fixture was taken into account. The

8



analysisshowedthat the boundarylayerdecaylengthdecreasedwith increasingpressure

and decreasingpanelthickness.

1.6 OBJECTIVES

In the light of the foregoing discussions, it seems pertinent and timely to extend

the work in the area of pressurized, stiffened shells by including in the analysis some of

the features which would improve the understanding of the subject and hence, further

reinforce the support for the design of a composite material fuselage for a large transport

aircraft. The objectives of the present research work are to develop analyses of an or-

thogonally stiffened, laminated composite, cylindrical shell subjected to internal pressure.

The stiffeners and shell are modeled as distinct elements in order to make available in the

analyses

• the distribution of the interacting loads between the shell and stiffeners, and

• the stress concentration in the shell adjacent to the stiffeners due to "pillowing".

Other analysis issues to be addressed in support of these objectives include

• geometrically nonlinear response versus linear response, and

• the influence of a ring, or frame, with an asymmetrical open cross section on the

linear elastic response.

The intent is to develop analyses that could be used for the design of stiffener-

to-skin joints and the design of laminated wall construction for the skin. A potential

benefit of such an analysis/design capability is (i) to use fewer expensive fa_steners in the

graphite/epoxy fuselage, and (ii) to obtain an optimum structural geometery (e.g. shell

wall thickness and lay-up, frame and stringer stiffnesses, and stiffener spacing etc.) for an

optimum interface load distribution.

9



1.7 PROBLEM DEFINITION

An idealized model is assumed for the semi-monocoque fuselage. This configuration

is a closed-end, stiffened, pressurized shell in which closure is mathematically presumed to

occur at infinity. The long circular cylindrical shell is stiffened on the inside by a regular

arrangement of identical stringers and identical rings (frames). With respect to the applied

internal pressure load, which is assumed spatially uniform, the model is periodic in the

circumferential and longitudinal directions both in geometry and in material properties.

Periodicity of this configuration permits the analysis of a portion of the shell wall centered

over a generic stringer-ring joint as shown in Fig. 1.2; i.e., deformation of a structural

unit cell (or repeating unit) determines the deformation of the entire stiffened shell. The

radius of tile middle surface of the undeformed cylindrical shell is denoted by R, and the

thickness of the shell is denoted by t. Axial coordinate x and the circumferential angle 0

are lines of curvature on the middle surface, and the thickness coordinate is denoted by z,

with -t/2 < z < t/2. The origin of the surface coordinates is centered over the stiffeners'

intersection so that -1 _< x _< l and -@ < 0 < ID, where 2l is the axial length, and 2R®

is the circumferential arc length of the repeating unit. The stringer is assumed to have

a symmetrical cross section, and the frame is assumed to have either an asymmetrical

or a symmetrical open section. Asymmetrical open section frames are commonly used

as transverse stiffeners in the fuselage structure. The stiffeners are modeled as discrete

beams perfectly bonded to the inside shell wall, so that the interacting loads between

the stiffeners and shell wall are line load intensities. These line load intensities represent

resultants of the tractions integrated across the width of the attachment flanges of the

stiffeners.

Mathematical formulations for the linear elastic and a geometrically nonlinear elastic

response are presented in this work. The formulations for the linear elastic response

10
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Fig. 1.2. Repeating unit of an orthogonally stiffened cylindrical shell.
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include the effect of transverse shear deformations and tim effect of warping deformation

of the ring's cross section due to torsion. These effects are important when the ring has

an asymmetrical cross section, because the loss of symmetry in the problem results in

torsion of the ring, as well as out-of-plane bending, and a concomitant rotation of the

joint at the stiffener intersection about the circumferential axis. For symmetric section

stiffeners, the response of the unit cell (see Fig. 1.2) is symmetric about the stringer axis

and the ring axis, and there is no rotation of stringer-ring-shell joint. The formulations

for a geometrically nonlinear response are presented for symmetric stiffeners only, and are

based on classical theory. The stringer-ring-shell joint is modeled in an idealized manner;

the stiffeners are mathematically permitted to pass through one another without contact,

but do interact indirectly through their mutual contact with the shell at the joint.

On the basis of the symmetry about tile x-axis for the unit, only the interacting line

load components tangent and normal to the stringer are included in the analysis. However,

due to the ring's asymmetrical cross section, the components of line loads between shell

and the ring consist of three force intensities and two moment intensities. The shell-

stringer interacting force components per unit length along the contact lines are denoted

by A_s(x) for the component tangent to the stringer, and A,s(x) for the component normal

to the stringer. The three shell-ring interacting force components per unit length along

the contact lines are denoted by Axe(0) for the component acting in the axial direction,

Ae_(8) for the component tangent to the ring, and Az,(0) for the component normal to

the ring. The two shell-ring interacting moment components per unit length along the

contact lines are denoted by A0_({)) for the component tangent to the ring, and Azr(0) for

the component normal to the ring. These interacting loads acting in a positive sense on

the inside surface of the shell are shown in Fig. 1.3.

12
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Fig. 1.3. Interacting line load intensities shown in the positive

sense acting on the inside surface of the shell.
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1.8 ANALYSIS APPROACH

For both tile linear elastic and geometrically nonlinear elastic response of the repeat-

ing unit to internal pressure, the Ritz method is used. The principle of virtual work is

applied separately to the shell, stringer and ring. Displacements are individually assumed

for the shell, stringer, and the ring as Fourier Series expansions. The virtual work func-

tionals are augmented by Lagrange multipliers to enforce kinematic constraints between

the structural components of the repeating unit. As a result, point-wise displacement con-

tinuity between structural elements is achieved. The Lagrange multipliers represent the

interacting line loads between the stiffeners and the shell, and are also expanded in Fourier

Series. Closed-end pressure vessel effects are included. Data for the example problems are

representative of the dimensions of large transport fuselage structure.

The primary advantage of using the analysis approach discussed above results from

the fact that a point-wise displacement continuity is acilieved between the structural

elements. In commercial finite element analysis codes viz., ABAQUS21_ NASTRAN 22,

etc., the interpolation functions used for the displacement fields of the structural elements

(e.g., the shell and beam elements) are, in general, not tile same. Thus, the continuity

between the structural elements can only be satisfied at discrete points, i.e., at the nodes.

Another shortcoming of these finite element codes is that they can not model the torsional

warping deformation of an open section, laminated, curved beam. This is a disadvantage

since the restraint of warping deformation in the ring due to continous contact with

the shell results in significant circumferential normal stresses in the ring. To account

for torsional warping deformation in the ring, the ring would have to be modeled as a

branched shell with these finite element codes. Branched shell models of the stiffeners

would significantly increase the degrees-of-freedom in the finite element model. It should

be mentioned that beam models including torsional warping deformation require seven

14



nodaldegreesof freedombetweenelements.The seventhdegreeof freedomis relatedto

the rate of twist. However,it is standardin finite elementcodesto haveonly six nodal

degreesof freedom(three displacementsand three rotations) betweenone-dimensional

elements.
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CHAPTER 2

GOVERNING EQUATIONS FOR LINEAR ANALYSES

2.1 STRUCTURAL MODEL AND ASSUMPTIONS

Linear elastic analyses are carried out for a unit cell model (Fig. 1.2) defined in

Section 1.7 of an internally pressurized, orthogonally stiffened, long circular cylindrical

shell. The interacting line loads between the shell and stiffeners acting in a positive

sense on the inside surface of the shell are shown in Fig. 1.3. For a symmetrical section

ring, the repeating unit (or unit cell model) is symmetric about 0-axis as well, which

implies that there is no out-of-plane bending and torsion of the ring, and consequently, no

rotation of the joint at the stiffener intersection about the circumferential axis. Thus, for

the symmetrical section stiffeners only the interacting line load components tangent and

normal to the stiffeners are non-zero.

Mathematical formulations for the linear elastic response presented in this chapter

include the effect of transverse shear deformations and the effect of warping deformation

of the ring's cross section due to torsion. These effects are important when the ring has

an asymmetrical cross section, because the loss of symmetry in the problem results in

torsion of the ring, as well as out-of-plane bending, and a concomitant rotation of the

joint at the stiffener intersection about the circumferential axis. This stringer-ring-shell

joint is modeled in an idealized manner; the stiffeners are mathematically permitted to

pass through one another without contact, but do interact indirectly through their mutual

contact with the shell at the joint. Restraint of cross-sectional warping, as occurs here in

the ring due to contact with the shell, is an important contributor to the normal stresses in

thin-walled open section bars, as was demonstrated by HofI ca. Based on transverse shear

deformation and cross-sectional warping of the ring, four structural models are defined.
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The simplestmodelusesnon-transverse-shear-deformabletheory,or classicaltheory,and

neglectswarpingdueto torsion. The mostcomplexmodelincludesboth effects.Models

of intermediatecomplexityoccurfor inclusionof oneeffectwithout theother.

The purposeof linear elasticanalysesis two fold. First, the linear elasticanaly-

sis developedin this chapteris comparedwith a geometricallynonlinearelasticanalysis

developedin Chapter 3 for the unit cell model with symmetrical cross section stiffeners.

Second, the effect of skin-stringer-ring joint flexibility, and the effect of warping of the

ring's cross section due to torsion, on the response are quantified. The following gen-

eral assumptions, which are valid for classical as well as transverse shear deformation

formulations, are made for linear elastic analyses of the unit cell model:

1. Normals to the undeformed reference surface remain straight and are

inextensional.

2. Material behavior is linearly elastic.

3. The thickness normal stress is assumed to be small with respect to the normal

stresses in the axial and circumferential directions, and hence it is neglected

in the material law.

2.2 TRANSVERSE SHEAR DEFORMATION FORMULATIONS

2.2.1 SHELL

A consistent first order transverse shear deformation theory is developed to model

the shell. Based on the assumption that the shell thickness t is relatively smM1 and hence,

does not change during loading, the displacements at an arbitrary material point in the

shell are approximated by

U(x,O,z) = u(x,O) + z¢::(x,O) (2.1)

17



Fig. 2.1. Displacements and rotations for shell.
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V(x,O,z) = v(x,O) + z¢o(x,O) (2.2)

W(x,O,_) = w(x,O) (2.3)

where u(x,O), v(x,O) and w(x,O) are the displacements of the points of the reference

surface, and Cx(x, 0) and Co(x, O) are the rotations of the normal to the reference surface

as shown in Fig. 2.1. Assuming small displacement gradients, the three-dimensional

engineering strains are related to the displacements by

OU 1 , OV OW

ezx - Ox eee - (R+z)[_ +w] ezz - Oz (2.4)

Cxz

OV 1 OU

_xe = o--g+ (R + z) 00 (2.5)

OU OW OV 1 rOW
- o_ + o--7- _o_ - o_ + (R + _)' O0 - v] (2.6)

in which the polar radius r in cylindrical coordinates is replaced by R + z. Substituting

Eqs. (2.1) to (2.3) into Eqs. (2.4) to (2.6), and rearranging the terms results in the

following expressions for the three-dimensional engineering strains:

_oo + zmoo

e=_ = exx + znx_ eoo- (1 + nz) _z_ = 0 (2.7)

e_0 = (1 + _) (2.8)

7ez
e_z = %z eez - (2.9)

(1+_)

in which e=z, n_x, eee, nee, %0, k_o, k.e, %_, and 7Oz are the shell strains independent of z-

coordinate. These shell strains are defined in the following sub-subsection. The transverse

shear strains e=z and eo_ given ill Eqs. (2.9) were obtained through differentiation of Eqs.

(2.1) to (2.3) with respect to z. However, Eqs. (12.1) to (2.3) are approximate in the

z-coordinate, so that differentiating with respect to z cannot capture the distribution

of the transverse shear strains through the thickness of the shell. Since the material is
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assumedrigid in the z-direction (ez._ = 0), the distribution of the transverse shear strains,

and consequently the distribution of the transverse shear stresses, does not influence the

shell behavior. It is the integral of the transverse shear stresses through the thickness,

or transverse shear resultants, that influences shell behavior. Thus, Eqs. (2.9) should be

viewed as average values of the transverse shear strains, or as the transverse shear strains

evaluated at the reference surface (z = 0).

2.2.1.1 STRAIN-DISPLACEMENT RELATIONS

In Eqs. (.2.7) to (2.9), the two-dimensional, or shell, strain measures, which are

independent of the z-coordinate, are defined by

0,L 0¢,
e_x = -- nz_ = _ (2.10)

O:c Oz

10v w 1 0¢o
coo = _ 0--0+ R t_oo - R O0 (2.11)

Ov 10u
"Yz0 = _xx + R 0"-'0 (2.12)

0¢o 10Cx 10v
_0 = 0_--_-"+ R 0--O + R 0-_ (2.13)

0¢o 10Cx 10v
_;,_ - (2.14)

0w

"_ = ¢_ + o--_

Ox R 00 R Ox

v 10w

"Y0_ = ¢0 - _ + _ 0-"O (2.15)

If we set the (average) transverse shear strains in Eqs.

rotations of the normal are

0W

Ox

v 10w
¢o-

R R O0

so that

NxO -= FZxO --

2 O2w 20v

R OxO0 R Ox
_zO = 0

2O

(2.9) to zero, then the

(2.16)

(2.17)

(2.18)



Hence, the thickness distribution of the shear strain reduces to

%:o + z(1 + _)_x0

ex0 = (1+ _) (2.19)

which coincides with the results of Novozhilov's 24 classical shell theory.

It is evident from Eq. (2.8) that three shell strain measures are needed to represent

the distribution of the in-plane shear strain through the thickness in the transverse shear

deformation shell theory. Whereas, only two shell strain measures are required in classical

shell theory to represent the shearing strain distribution through the thickness (refer to

Eq. (2.19)). Also it can be shown that under rigid body motions of the shell, the nine shell

strain measures, given by Eqs. (2.10) through (2.15) vanish. (For Novozhilov's classical

shell theory, six shell strain measures given by Eqs. (2.10-2.12) and (2.18) vanish under

rigid body motions.)

2.2.1.2 VIRTUAL WORK

In the three-dimensional elasticity theory, the internal virtual work for the shell is

given by

_lA)shell I/IV• "int = [a=xSexx + aoobeoo + azzSezz + axoSexo + axzSe_: + cro..teoz] dV

(2.20)

_lA)shell /IS "_-T--int = t_e_hell _heU dS, (2.21)

21

where Vdenotes the volume of shell and dV = (1 + z) dxR dO dz. Substitute the variationR

of Eqs. (2.7) to (2.9) into Eq. (2.20), and note that the virtual strains are explicit functions

of z. Integrals of the stresses with respect to z give force and moment resultants conjugate

to the shell strains. Hence, the volume integral in Eq. (2.20) reduces to an area integral,

and the internal virtual work becomes



whereS denotes the area of the reference surface with dS = dxRd& The generalized 9 × 1

stress vector for the shell in Eq. (2.21) is defined by

5_h_t = [Nx,:, Noo, No,:, Mxx, Moo, 2(I_o, -_/ixe, Q _, Q o]T,

and the generalized strain vector for the shell is

Cshetl = [e_x, _00, 7_0, t%x, t_O0,?_zO,krO, 7xz, 70z] T

(2.22)

The physical stress resultants and stress couples for the shell, some of which appear in

Eq. (2.22), are defined in terms of stress components of the symmetric stress tensor in

cylindrical coordinates by

/, z(N_, M_) = (1, z)ax_(l+ _) dz

(Noo, Moo) =f(1,z)aoo dz

z(N,:o, Mxo) = (1,z)a_o(1 + -_) dz
(2.24)f

(No,:, Mo_) =/(1,z)ao_ dz

jO. = + dz

Qo =jaozdz

In Eq. (2.22), _lx0 and f1_0 are the mathematical quantities conjugate to the modified

twisting measures kx0 and _:0, respectively, and are defined in terms of the physical stress

couples by

1

The nine elements of the stress vector in Eq.

1

f/I_:o = -_( M,:o - Mo_: )

(2.22) and the relations of Eq.

(2.25)

(2.25)

determine all the stress resultants and stress couples listed in Eq. (2.24) except for shear

resultant N_e. The shear stress resultant N_e is determined from moment equilibrium

about the normal for an element of the shell. This so-called sixth equilibrium equation is

Mex
Nxe = Ns_ + -- (2.26)

R

22

(2.23)



Written out in full, the internal virtual work for the shell is given by

_Wi_h_u = f_ [N_._:&,:x + Noo&oo + No,:_7,:o + M,:x_nxx + Moo6noo + M_o_n,:o

+ l_lro_iCxo + Oz(_7z_ + Qo_7o..] dS

(2.27)

The external virtual work for the shell is

• "ext = + (2.28)

where bld2_ h¢_ is the external virtual work due to the spatially uniform internal pressure

load, and 6W_ heir is the external (or augmented) virtual work due to interacting loads.

The external virtual work for a cylindrical shell under uniform internal pressure, including

an axial load due to the closed-end effect, is written as

®

6W; heu = p _w dS + p dO [6u(l,O) - 6u(-l,O)] (2.29)

-6)

The discussion on the augmented virtual work due to interacting loads is given in Section

2.5.

2.2.1.3 CONSTITUTIVE RELATIONS

The material law for an orthotropic lamina with one material axis in the normal

direction is given by

{ xx}r0110120a l{exx}[Q16 (026 Q66
(2.30)

where Qij are the transformed reduced stiffnesses given in the text by Jones 2s. (The

thickness normal stress is assumed to be zero in the material law.) Substitution of Eq.

(2.30) into Eqs. (2.24) in conjunction with Eqs. (2.25), and use of Eqs. (2.7) to (2.9) for

the three-dimensional engineering strains, results in the following linear elastic constitutive
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law for a laminated composite shell wall:

I _T x

No8

M_

M_o ,

]_Izo J

A12

A16

= Bll

B12

B_6
B_6

A12 A16 Bll

A22 A26 B12

A26 A66 B61

B12 B61 Dll

B22 B62 D12

B_ B_ DI_

B12

B22

B62

D12

D22

h_
0_6

BI6
B16

B16
DI6

D_6

D_

B_6
B_8
D_6

D_6
D_

I CX.T •

_OB

I_XX

t_00

I_XO

~

_xO ,

in which stiffnesses Aij, Bij and Dij are given by

(All,Bll,D11)

(A12, B12, D12)

(A22, B22, D22 )

(A16, B61 )

(A26, B6'_ )

A66

B]6

B_6

B_6

B_6

Z,= (1, z, z2)O11(1 + -_)dz

=f( 1, z, z 2 )Q12dz

= (1,z, z2)Q22(1 + ) dz

=/(1, z)Q,6dz

= 1,_)_)26(1+_) dz

z -ldz= _)66(1 + _)

-- f Q16z(l ÷ R)dZ

_ Z 2

= f Ql6-_-_dz

z __)-1= _)26z(1+ _)(1 + dz

= Q26_-_( + ) dz

J_t Z Z -1B_6= Q**z(l+_)(_ + X) d_

o / Z2 _ -1_ = 06_(_ + R) _z
dt

Z

dt

o / - Z3

D_6 =j_ Q16-_dz

D_ 6 = 026z'2(1 + )(1 + ) dz

(2.31)

(2.32)
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where

D_6 = ..6 (1 + dz
Jt

it z 2 _ -1D_ = Q66z_(l+_--_) (I+R) dz

S z 3 z z -1D61_ -- Q66_-_(1 + _)(1+ _) dz

o') - _" 1 --1
= + ) Uz

The lamina material law relating transverse shear stresses and strains is

a0z = [C45 eo .

C44 =- G13Cos 20_ + G23Sin2_

C45 =(G13 - G23)CosaSince

C55 =G23Cos2c_ + GlaSin2a

in which a is the ply orientation angle. Substitution of Eq. (2.33) into the last two of

Eqs. (2.24), in conjunction with Eqs. (2.9) for the transverse shear strains, results in

the following linear elastic constitutive law for a laminated composite shell wall relating

transverse shear resultants and strains:

Qo [A45 A55 ^toz

The transverse shear stiffnesses, A44, A45, and Ass in Eq. (2.34) are given by

it z )dzA44 = C44(1+

A45 = _ C45dz

Ass=TC55(l + R)-ldz

(2.34)

Since Eqs.

tive law relating transverse shear resultants and strains, Eq.

(2.35)

(2.9) represent average values of the transverse shear strains, the constitu-

(2.34), can be viewed as
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a Hooke'slaw basedon tile assumptionof constanttransverseshearstrain distribution

through the thickness.Alternativelyonecanobtain the constitutivelaw relating trans-

verseshearresultantsand strainsbasedon the assumptionof constanttransverseshear

stressdistribution throughthe thickness.A detaileddiscussionon the subjectis givenin

Chapter2of thetext byVasiliev26.However,both themethodsresultin a shearcorrection

factor of one(asopposedto 5/6) for isotropicmaterials.Cohen2r derivedthe transverse

shearstiffnessesof laminatedanisotropicshellswithout makingeitherof theassumptions

mentionedabove.HeemployedCastigliano'stheoremof leastworkto minimizethe shear

strainenergy,andobtainedthe desiredconstitutivelaw,whichfor homogeneousisotropic

materialsgivesa shearcorrection factor of 5/6.

2.2.1.4 EQUILIBRIUM EQUATIONS

The equilibrium equations for the shell can be derived using the principle of virtual

work which is stated as

_/_sh[ll ,_lA?shell= _"ext , (2.36)

for every kinematically admissible displacement field. For the purpose of deriving the

equilibrium equations of the shell, the contribution of the augmented virtual work due

to interacting loads is neglected in Eq. (2.28) for the external virtual work. Thus, sub-

stituting Eqs. (2.27) and (2.29) for internM and external virtual work, respectively, into

Eq. (2.36), using the definitions of the strain-displacement relations given by Eqs. (2.10)

through (2.15), performing integration by parts, and recognizing the arbitrary nature of

the first variation of the displacements, results in the following set of equilibrium equa-

tions, or Euler equations, for the shell:

c?N_x 1 0Ne_
_u : 0----7-+ R 00 - 0 (2.37)

ONxe 1 iJNee 1
&: o--7-+ 0---g-+ - Oe = 0 (2.3s)
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OQ_ 100o 1
_w : -- + Noo + p = 0 (2.39)

Ox R O0 R

OMxz 10Mox
,_0_ : O---U-,+ _ O0 Qz = 0 (2.40)

OM___..__o+ 10Moo Qo = 0 (2.41)
_cPo : Oz R O0

2.2.1.5 BOUNDARY CONDITIONS

The derivation of Euler equations from the principle of virtual work results in the

following boundary integrals:

6)

R dO(N=_ )3u + N_o6v + Qx_w + Mx_.6¢_: + M_:o6¢o -t

-6)

1

/E ]+°dx =0
+ No,:,Su + Noo6v + Qoi_w + Mo,:,Sc)_ + Moo6¢o -o

-l

(2.42)

Boundary integrals in Eq. (2.42) can be made to vanish individually by specifying the

boundary conditions in two ways. One way is to prescribe periodic boundary conditions;

alternatively either an essential or a natural boundary condition can be prescribed. In the

first case, the periodic boundary conditions at x = -t-I are expressed as

N,o(l,0) = Nxo(-t,O), ,%(1,0) = ev(-t,o)

,Sw(l,O) = ,_w(-l,O)

6¢_(/,0) =/_¢z(-/,O)

(2.43)

M_o(l,O) = Mxo(-l,O), _6o(I,0) = 6¢o(-1,0) 0 E [-0,01

For the closed-end pressure vessel effect, prescribe

Nxx(l,O) = I?p`_ and Nxx(-l,O) = Rp._ 0 e [-0,0] (2.44)
2 2
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Thus, (Su(+l,O)is not prescribedto vanish.Periodicconditionsat 0 = +t9 edges are

Nox( x, O) = Xo_:(:r, -19),

Noo(z, O) = Noo(z, -0),

Qo(x,O) = Qo(z,-O),

Moo(x, 19) = Moo(x, -®),

Mo_:(z, O) = Mo,:(x,-19),

5u( x, O) = _u( x, -0)

6w(z, 19) = 6w(x, -0)

_¢_(x,19) = _¢_(z,-0)

_¢0(z, O) = _¢o(x,-19)

(2.45)

In the second case, the associated boundary conditions at x = +l edges are to

prescribe

either N_x - _ or u but not both,

either Nx0 or v but not both,

either Q_ or w but not both,

either Mx_ or ¢_: but not both, and

either M_o or ¢0 but not both.

The associated boundary conditions at 0 = +19 edges are to prescribe

either No_ or u but not both,

either Noo or v but not both,

either Qo or w but not both,

either Mex or Cx but not both, and

either Meo or 4)0 but not both.

2.2.2 STRINGER

Let u,(x) and ws(x) denote the axial and normal displacements, respectively, of a

material point on the stringer reference axis, and let C_os(x) denote the rotation of normal

as shown in Fig. 2.2. Thus, the axial and normal displacements of a generic material

point of the stringer are given by

gs(x,_) = us(x) + _¢0s(x) (2.4G)
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Fig. 2.2. Displacements and rotations for stringer.
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i4._(x,_) = w_(x), (2.47)

respectively. The coordinate system (x, 0, _) is located at the centroid of the stringer as per

the right-hand rule (see Fig. 2.2), in which _ is the normal coordinate. Using Eqs. (2.46)

and (2.47) and assuming small displacement gradients, the three-dimensionM engineering

strains are

8
ezz = 0 exz = _zse2._ = exs + _es s s (2.48)

which are independent of the fl-direction coordinate because of the symmetric deformation

assumption. In Eq. (2.48), the one-dimensional strain-displacement relations are defined

by

I , ' (2.49)_xs = u s _0s = ¢ 0s %-s = ¢0_ + w s

in which (_s is the normal strain of the centroidal line, the product _aes is the portion of

the axial normal strain due to bending, ?zs is the transverse shear strain, and the prime

denotes an ordinary derivative with respect to x.

The physical force and moment resultants for the stringer in terms of stress compo-

nents of the symmetric stress tensor are given, in usual way, by

(1,()a_ dAs
JJA (2.50)

// s dAs
JJA

in which N_s is the axial force in the stringer, Mos is the bending moment, l_s is the trans-

verse shear force, and As is the cross-sectional area of the stringer. Based on transverse

shear deformation theory, the internal virtual work expression for the stringer is

1

bu_t_i'_ge_" / [N_s5%,s + .Mos(_os + l_(_"f_s]dx, (2.51)• " int _ "
d

-1

and the Hooke's law is

Nxs = (EA)se_s Mos = (EI),gos 1_ = (GA)sTzs (2.52)
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2.2.3 RING

The structural model is based on transverse shear deformation theory and includes

cross-sectional warping due to torsion. Warping is a distinctive feature of thin-walled,

open section beams. Restraint of cross-sectional warping, as occurs here in the ring

due to its contact with the shell, leads to additional longitudinal normal strains in the

ring as a result of torsion. The extension of classical thin-walled, open section, curved

bar theory to laminated composite materials was developed by Woodson, Johnson, and

Haftka 2s. However, Woodson et al. did not consider transverse shear deformations. Most

of the developments for the ring theory presented here are obtained from Woodson's

dissertation -_9. The coordinate system (x,0,() is located at the centroid of the ring as

per the right-handed system as shown in Fig. 2.3, in which ( is the normal coordinate

in the radial direction. Let the displacements of a material point on the ring reference

axis in the x-, 0-, and (-directions be denoted by u_(0), v,.(O), and w_(0), respectively.

Let the rotations about the x-, 0-, and (-axes be denoted by (Px_(0), CeT(0), and ¢..,.(0).

respectively. See Fig. 2.3 for the positive sense of these quantities. The displacements of

a generic point in the cross section are related to the displacements and rotations of the

point on the reference surface by the approximations

u_(x, e, _) = u_(e) + (¢_r(e) (2.53)

t_(x,e,_') = V_(e) + ¢¢=_(_) + X¢z_(e) -- _(x, _')TT(e) (2.54)

n_(x,e,_) = w_(_) - x¢_(e) (2.55)

The cross section of the ring is normal to the 0-axis, that is, the x - ( plane, so that U_

and l't"r are interpreted as in-plane displacement components, and l_r is the out-of-plane

component. It is assumed that the cross section is rigid in its own plane. Hence, in-plane

displacements in Eqs. (2.53) and (2.55) are composed of a translation of the cross-sectional
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Fig. 2.3. Displacements and rotations for ring.
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origin plus a small rigid body rotation ¢0T about the 0-axis. The out-of-plane displacement

given by Eq. (2.54) is composed of a translation of the origin vT, a component (¢_,_ due

to bending about the x-axis, a component x¢,_ due to bending about the (-axis, and a

component -wr_ due to warping of the cross section out of the flexural plane. In Eq.

(2.54), _0(x, () is the warping function for the ring's cross section, and r_(0) is the twist

rate which is given after the next equation. The internal virtual work is

®

_lA]rin9 /
• "int = [No_6eor + M_nx_ + Mz_6nz_ + T_T3r_ + M_3(_/Ro) + V_Tx_ (2.56)

-®

+ IJ_67zT]Ro dO

in which .h:_ is the circumferential force, Mx_ is the in-plane bending moment, M_ is the

out-of-plane bending moment, M_r is the bimoment, Tsr is the St. Venant's torque, I,_

is transverse shear force in the x-direction, t_r is transverse shear force in the (-direction,

e0_ is the circumferential normal strain of the centroidal arc, e;_:_ is the in-plane bending

rotation gradient, _z_ is the out-of-plane bending rotation gradient, %:_ is the transverse

shear strain in x-O plane, 7z_ is the transverse shear strain in 0-( plane, and R0 is the

radius of ring reference arc. The rotations and strain-displacement relations are

1 1 • 1

1 (2.57)1 • 1 .

in which the over-dot denotes an ordinary derivative with respect to 0. The material law

is based on the assumption that the shear forces are decoupled from extension, bending,

and torsional deformations of the ring. Thus, Hooke's law for the ring is

and

Nor }

Mxr

M Z ?"

M_r

r_

EA ES_ -ES: -ES_ EH I {

ES_ EI_ -EI_x -EI_ EHc

-ESz -EIz_ EIz_ EI_z -EHs

-ESw -EI_ EI_ EI_ -EHq

EH EHc -EHs -EHq GJ

t'_xr

Nzr

:r_/ Ro

Tr

V_T GA_z GA_o 7_

(2.5s)

(2.59)
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The stiffnesses in Eq. (2.58) are commonly referred to as modulus-weighted section

properties. The "EH" terms are unique to laminated thin-walled beams (see Bauld and

Tzeng3°). If the laminate construction for each branch of the ring is specially orthotropic

with respect to x-, 0-, and (-directions, then the "EH" terms are all equal to zero. The

stiffness elements are evaluated from a computer code developed by Woodson. The reader

is encouraged to refer to Chapters 2 and 3 of Ref. [29] for further details on this subject.

The transverse shear stiffness elements in Eq. (2.59) are given by

K

k=l

K

G'A_=_ =[A4s h_ + Z(d45)k (b_)k] (2.60)
k=l

K

G'A_o =[A66 h_ + _"_(A55)k (bw)k]
k--1

in which the transverse shear stiffnesses, A44, A4s, and A55 are calculated based on the

assumption of constant transverse shear strain distribution through the thickness, and

are given by Eq. (2.35). In deriving the transverse shear stiffness elements given by Eqs.

(2.60) above, it is assumed that cross section of the ring is made up of a vertical web and

horizontal flanges. That is, the web is assumed to be parallel to the C-axis, and flanges

are assumed to be parallel to the x-axis. In Eqs. (2.60), the parameters hw and b,,, denote

the web height and flange width, respectively, and K is the total number of flanges in the

ring cross section.

For structural models in which the effect of warping of the ring cross section is

excluded, the contribution of the bimoment, M_r, to the virtual work of the ring in Eq.

(2.56) is neglected, and the fourth row and column of the stiffness matrix, Eq. (2.58), are

ignored. Also, the warping function w(x, _') is taken as zero.
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2.3 CLASSICAL FORMULATIONS

2.3.1 SHELL

The shell is modeled with Sanders' theory 31, in which first approximation thin shell

theory is used; i.e., the effects of transverse shear and normal strains are neglected. The

displacements at an arbitrary material point in the shell are approximated by Eqs. (2.1)

to (2.3), in which the rotations Cx and ¢0 are related to the displacements by Eqs. (2.16)

and (2.17), respectively. Thus, transverse shear strains exz and eaz in Eqs. (2.9) vanish.

For small displacement gradients, the three-dimensional engineering strains in Sanders'

theory are given by Eqs. (2.7) and

Z Z _S(1 + _ + _)_x0 + z(1 + _)_0
_x_ = (1+ _) (2.61)

in which the quantity n_0"_ is the twisting strain measure in the Sanders' theory, which is

defined in the following sub-subsection.

2.3.1.1 STRAIN-DISPLACEMENT RELATIONS

Define a generalized strain vector in terms of the shell strain measures by

_'sheZz= [e_, e00,7_0, _xx, coo, n_o] T (2.62)

The first five strain measures of the shell reference surface in Eq. (2.62) are related to the

displacements by Eqs. (2.10-2.12), and the sixth strain measure, _o, is given by

_;_0 = -_x + R 0---O+ ¢_ (2.63)

in which the rotation about the normal, ¢_, is given by

l (Ov 10u¢_=2 0x k_ ) (2.64)

The Donnell-Mushtari-Vlasov (DMV) approximation, or quasi-shallow shell theory is ob-

tained by neglecting the term _ in Eq. (2.17) for the rotation ¢0, and the rotation about

the normal Cz in Eq. (2.63).
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2.3.1.2 VIRTUAL WORK

Define a generalized stress vector in terms of the stress resultants and couples of

Sanders' theory by

_shetl : [Nxx, Noo, NSo, Mzz, 11_o0,M_o] T (2.65)

such that the internal virtual work is still given by Eq. (2.21) except that the stress

and strain vectors are 6 x 1 vectors in Sanders theory. Quantities N_0 and M_0 are the

modified shear and twisting moment resultants. In terms of physical stress and moment

resultants of the shell these are given by

1 N 1 M
N_o = -_( _:o+ Nor) + -4--R( xo - Msz) (2.66)

1 M
M_o = -_( xo + Mox) (2.67)

In the Sanders' original paper 31 the term _-_R(Mxo - Mox) in Eq. (2.66) was considered

1
to be small as compared to _(N_o + No_), and was, therefore, neglected. However, this

approximation is not made here. For infinitesimal virtual displacements, the internai

virtual work for the shell can be obtained by substituting Eqs. (2.62) and (2.65) into Eq.

(2.21), which results in

_%)shell = /fS s _s
"--int [Nz_ezx + Noe6eeo + N_o67zo + Mxx6nxz + Meo6noo + M_._6n_:s] dS (2.68)

where S denotes the area of the reference surface. The external virtual work expression

for the classical shell theory is still given by Eq. (2.28).

2.3.1.3 CONSTITUTIVE RELATIONS

Consider the material law for an orthotropic lamina given by Eq. (2.30). To get the

material law for the shell, substitute Eq. (2.30) into the definitions of the resultants in

terms of stresses, Eqs. (2.24); substitute Eqs. (2.7) and (2.61) for the three-dimensional
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strains; and then perform the integration with respect to the thickness coordinate. Using

the definitions of the modified resultants in Eqs. (2.66) and (2.67) gives the final form of

tile material law as

/Nxx /

Noo

Mxx

Moo

M=:o

All

A12

A16

Bll

B12

B16

A12 A16 Bll B12

A22 A26 B12 B22

A26 A66 B61 B62

B12 B61 Dn D12

B2_ B62 DI_ D22

Be6 B6G D16 D26

B26

B66

D16

D26

DG6

¢o0

%:0

Iq, xx

NO0
8

Nx0

(2.69)

where the stiffnesses All, A12, A22, Bll, B12, B22, Dll, D12 and D22 in Eq. (2.69) are given

by the first three of Eqs. (2.32), with the remaining stiffnesses defined by

J_t 2 z 2(A16,B61) = (1,z)Q1611 + _-_ + --_.ff]dz

j Z Z 2 Z -1(A_6,B62)= (1,z)O26[l+_-_+_R-ff](l+7) dz

So zA66 = 6611 + _ + ]2(1 + 7) dz

B16 =_Q,6z(1+ 3)dz

z 1 z -1B26 = Q26z(l+7_)(+7) dz

o_t Z Z 2 Z Z -1B66 = (_66Z[1 q- _-_ q- _R-ff](1 + _)(1 + 7)

f zD16 = Q16z2(l+-_)dz

j z z -ID26 = Q26z_(1 + _-_)(1 + 7) dz

_t Z 2 Z -1066;(1+ (1+ 7) dz

dz

(2.70)

2.3.2 STRINGER

The stringer is modeled with Euler-Bernoulli beam theory thereby neglecting the

transverse shear strain. Hence, equating 7zs in the last of Eqs. (2.49) to zero results in

the following expression for Cos:

= (2.71)
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It maybenotedthat neglectingthe transverseshearstrain wouldalsomodify the virtual

workstatementgivenby Eq. (2.51), and the third equation in the Hooke's law, Eq. (2.52),

is neglected.

2.3.3 RING

The ring is modeled with thin-walled, open section, curved bar theory developed by

Woodson, Johnson, and Haftka 2s. For classical formulations, the transverse shear strains

are neglected. Hence, equating _xr and -_'_r in the last two of Eqs. (2.57) to zero results

in the following expressions for the rotations Cx_ and Cz_.

1

/t0

1
Czr - _ (2.72)

R0

It may be noted that neglecting the transverse shear strains would also modify the virtual

work statement given by Eq. (2.56), and Hooke's law for the shear resultants, Eq. (2.59),

is neglected.

2.4 DISPLACEMENT CONTINUITY

In order to maintain continuous deformation between the inside surface of the shell

and stiffeners along their lines of contact, the displacements and rotations should be

continuous at the shell-stiffener interface. For a symmetrical section stringer, the unit cell

model is symmetric about x-axis, and the only non-zero displacements for the stringer

are the axial and normal displacements. The axial and normal displacements at the top

flange of the stringer in contact with the shell are obtained from Eqs. (2.46) and (2.47)

for _ = es, where es is the radial distance from the stringer centroid to the contact line

along the inside surface of the shell. Similarly, the corresponding shell displacements

at the inside surface of the shell (i.e., at z = -t/2) are obtained from Eqs. (2.1) and
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(2.3). Hence,the followingdisplacementcontinuity constraintsare imposedalong the

shell-stringerinterface(i.e., -l __x __ l, 0 = 0).

t
g:: = u(x,O) - _¢=(x,0) - [us(x) + esO6,(x)] = 0 (2.73)

gzs = w(x,0) - ws(x) = 0 (2.74)

The asymmetrical section ring bends out-of-plane and twists, in addition to in-plane

bending and stretching along its circumference. Hence, the displacement field for the ring

consists of axial, circumferential, and normal components given by Eqs. (2.53) to (2.55).

From Eqs. (2.54) and (2.55), it can be observed that the circumferential and normal

displacements of the ring vary along the width of the attachment flange.

Point-wise continuity of the circumferential displacement between the inside surface

of the shell and the attachment flange of the ring implies

V(x,O,-t/2) = V_(x,O, er) x e (-bll,bI2), 0 E (-®,@) (2.75.)

in which bll + bi2 = b] > 0 where bI is the width of the attachment flange, and er is

the distance from the ring reference arc to the contact line along the inside surface of the

shell. Since the kinematic assumptions in the ring theory give l+r as an explicit linear

function of x, Eq. (2.54), and the x-distribution of the shell displacement V, Eq. (2.2), is

not known apriori, pointwise satisfaction of Eq. (2.75) across the width of the attachment

flange cannot be achieved. To proceed, the shell displacement is approximated in a Taylor

series in x about x = 0. That is,

0V
= v(o,o,-t/2) + xb-TxI=_-0+ O(x2) (2.76)

Substituting Eq. (2.76) into Eq. (2.75), the continuity of the circumferential displacement

across the width of the attachment flange can be achieved through terms of order x. Thus,

V(O,O,-t/2) = Vr(O,O,e_) leads to

t
got = v(O,O)- _¢0(0,0) - [v_(O)+ er¢=r(O)- WOrr(O)] = O, (2.77)
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0V
and xTz[_.=o = V_(x,O, er) - Vr(O,_,er) leads to

[ Ov t O¢o ]cz,. = _x{_--o 2 az {_-_o-[¢.(o)-_-,.(o)] = o (2.78)

The constraint gzr = 0 imposed through Sq. (2.78) also implies that the rotation about

oy equals the rotation of the ringz-axis of the shell's line element tangent to x-curve, -b-_,

around C-axis along their contact line. In Eqs. (2.77) and (2.78), parameters w0 and 0.) 1

are the constant coefficients in the contour warping function, w(x, _) = wo + xwl, for the

attachment flange of the ring. (Thickness warping is neglected and _"=constant along the

flange contour.) For structural models in which the effect of warping of the ring cross

section is excluded, the contour warping function w(x, () is taken as zero.

Similarly, point-wise continuity of the normal displacement between the inside sur-

face of the shell and the attachment flange of the ring implies

w(_,o,-t/2) = w_(x,o,_) x e (-bll,b$2), 0 e (-O,O) (2.79)

Since the kinematic assumptions in the ring theory give Wr as an explicit linear function

of x, Eq. (2.55), and the x-distribution of the shell displacement IV, Eq. (2.3), is not

known apriori, pointwise satisfaction of Eq. (2.79) across the width of the attachment

flange cannot be achieved. To proceed, the shell displacement is approximated in a Taylor

series in x about x = 0. That is,

w(x,o,-t/2) = w(o,o,-t/2) + x-_w I_=0+ o(x 2) (2.s0)

Substituting Eq. (2.80) into Eq. (2.79) the continuity of the normal displacement across

tile width of the attachment flange can be achieved through terms of order x. Thus,

W(O,O,-t/2) = Wr(0,8, e_) leads to

g,_ = w(O,O)-w_(O) = o (2.81)
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and x--57_:°wlx=o= lYr(z,O,e_)- Wr(O,O, er) leads to

Ow
ao_ = oz [_=o+ ¢0_(0)= 0 (2.82)

The constraint Go_ = 0 imposed through Eq. (2.82) also implies that the rotation about

ow is equal to the twist of the ring,0-axis of the shell's line element tangent to x-curve, - o--k-,

¢0_, along the contact line.

Point-wise continuity of the axial displacement between the inside surface of the

shell and the attachment flange of the ring implies

u(x,o,-t/2) = U_(x,O,e,.) x E (-b]l,b]2), 0 E (-O,O) (2.83)

Since the kinematic assumptions in the ring theory give U_ independent of x, Eq. (2.53),

and the shell displacement U, Eq. (2.1), is an arbitrary function of x, pointwise satisfaction

of Eq. (2.83) across the width of the attachment flange can be achieved only through terms

of order x °. Thus, U(0, 0, -t/2) = U_(0, 0, e_) leads to

t

gx_= u(O,0)- _¢x(0, 0)- [u_(0)+ _¢0_(0)] = 0 (2.84)

In order to include the axial load sharing between the shell and stringer due to closed-

end pressure vessel effects directly into the analysis, a seperate constraint is imposed. This

constraint is that the elongation of the shell at 0 = 0, z = 0 and the elongation of the

stringer at _ = 0 are the same; i.e.

[u(t,0,0)- u(-_,0,0)] - [us(t,0)- vs(-l,0)] = o (2.85)

Substituting Eqs. (2.1) and (2.46) into Eq. (2.85) leads to

[u(l,0)- u(-l,0)] - [us(l)- _s(-l)] = 0

41
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2.5 AUGMENTED VIRTUAL WORK FOR THE ASSEMBLY

Inter-element continuity is enforced by augmenting the virtual work functional with

the integrals of Lagrange multipliers functions times the variations in the displacement

constraints. Refering to Fig. 1.3 the Lagrange multipliers are interpreted as the compo-

nents of the interacting line loads between the stiffeners and the shell, and are defined

positive if acting on the inside surface of the shell in positive coordinate directions. Thus,

for the shell, the augmented (or external) virtual work due to the interacting loads is

l

-I

0

+/
-0

+ A_(O)(_w(O, 0) - Ao_(O)(i( ._I_=o )

(R - 2)dO - Q[_(1,O) - _u(-t,O)]

Ov t 0¢_
+ 2 oz I.=o)}

The axial force Q in Eq. (2.87) is an additional Lagrange multiplier that accounts for a_xial

load sharing between the stringer and shell. Similarly, for the stringer, the augmented (or

external) virtual work due to the interacting loads is

l

,,\ = - A..(_) +
-_ (2.88)

+ Q{_,(0 - _..(-0}

and, for the ring is given by

-®

6r

+ A.,.(O)Sw,(O) + ao,(O)6¢o.(O) + Az_(O)[(5¢..(O)- wi6r.(O)] }(1 + _o),

Ro dO

(2.89)
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The displacementconstraints(Eqs. (2.73), (2.74), (2.77), (2.78), (2.81), (2.82),

(2.84)and (2.86))areenforcedby vanishingof the innerproductof theseequationswith

the variationsin the Lagrangemultiplier functions. The variational form of thesecon-

straintsare
l

f [a_,gxs+_.,g=,]_x = 0
-l

(2.90)

®

-®

+ _SAorgo_+ (SAz_gz,, + (5Ao_Go_ +/fA_G_] (Ro + er) dO = 0 (2.91)

aQ{[u(z,o)- u(-t,o)] - [,,,(z)- u,(-z)]} = o (2.92)
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CHAPTER 3

GOVERNING EQUATIONS FOR NONLINEAR ANALYSIS

3.1 ANALYTICAL MODEL AND ASSUMPTIONS

A geometrically nonlinear elastic analysis is carried out for the orthogonally-stiffened

cylindrical shell subjected to internal pressure. The structural repeating unit (or unit cell

model) of Fig. 1.2 is analyzed to obtain response of the entire structure. The shell is

modeled with Sander's nonl'mear theory of thin shells, and the stiffeners are modeled with

a'nonlinear Euler-Bernoulli beam theory. The purpose of nonlinear elastic analysis is

twofold: First, the distributions of interacting loads between the shell wall and the stiff-

eners are obtained and compared with those obtained from a geometrically linear elastic

analysis. Second, the influence of geometric nonlinearity on the the stress concentration

in the shell adjacent to the stiffeners due to "pillowing" is studied.

Only stiffeners with symmetrical cross sections are considered for the nonlinear re-

sponse. Hence there is no out-of-plane bending and torsion of the ring, and no rotation of

the joint at the stiffener intersection about the circumferential axis. Also, on the basis of

the symmetry about the x- and 0-axes for the repeating unit, only the interacting line load

components tangent and normal to the stiffeners are included in the analysis. The shell-

stringer interacting force components per unit length along the contact lines are denoted

by Axs(x) for the component tangent to the stringer, and Azs(X) for the component normal

to the stringer. Tile two shell-ring interacting load components per unit length along the

contact lines are denoted by A_(8) for the component tangent to the ring and Az_(8) for

the component normal to the ring. These interacting loads acting in a positive sense on

the inside surface of the shell are shown in Fig. 1.3. In this chapter nonlinear formulations
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arepresentedfor the shellandstiffenersbasedon classicaltheory.The followinggeneral

assumptionsaremadefor nonlinearelasticanalysisof the repeatingunit:

1. Normalsto the undeformedreferencesurfaceremainstraightandnormal

to the deformedreferencesurface,and areinextensional.

2. Material behavioris linearlyelastic.

3. The thicknessnormalstressis assumedto besmallwith respectto the normal

stressesin the axial andcircumferentialdirections,andhenceit is neglected

in the materiallaw.

3.2 SHELL

3.2.1 STRAIN-DISPLACEMENT RELATIONS

Sanders 32 nonlinear theory of thin shells is employed to model the shell. The gen-

eralized strain vector for the shell is given by Eq. (2.62). Assuming the strains are small

and rotations are moderately small, the membrane strain-displacement relations are

Ou 1_ 1_
xx = Ox + ¢ x +

10v w 1 2 1 _ (3.1)

Ov 10u

in which the rotations Cx, ¢e and ¢z are given by Eqs. (2.16), (2.17) and (2.64), respec-

tively. The change in the normal curvature components, axe, nee, and nz_'s in terms of the

shell rotations are linear and are given by Eqs. (2.10), (2.11) and (2.63), respectively. The

Donnell-Mushtari-Vlasov (DMV) approximation, or quasi-shallow shell theory, is obtained

by neglecting the rotation about the normal in the strains of Eqs. (3.1) and (2.63), and
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the term -_in rotation ¢0of Eq. (2.17). In this work, it is assumedthat thecontribution

of the rotation about the normal to the strainsis negligiblefor the shell. However,the

DMV approximationis not assumedinitially.

3.2.2 INTERNAL VIRTUAL WORK

The generalized stress vector in terms of the stress resultants and couples of Sanders'

theory is defined by Eq. (2.65), and the internal virtual work for the shell in deformed

state is given by Eq. (2.68). However, the stress resultants and stress couples are now

defined in terms of second Piola-Kirchhoff stress tensor, which is based on the undeformed

configuration of the body. Substituting for strains from Eqs. (3.1), _xx from (2.10), _:00

from (2.11), and n_0 from (2.63) into Eq. (2.68), in conjuction with Eqs. (2.16) and (2.17)

for the definitions of rotations, results in the following expression for the internal virtual

work for the shell:

6_A:she,, I/S{ Ou= ._(,:x 6(-=--)
F vin t ox + __ (5(Ou) Noo( 10wOO + [- --ff- ' -_ O0 v _ Ow]R) X':° '%R Ox

s M_° l _( Ov. [ Noo Moo ] Ov 1_o 02w)+ IN':e + R J _) + t--ft- + -frj '_(-_) + -- ,5_- M,= 5( 0_:

R 2 (_(-0-0if--) R _(O-_x ) + N':x-_x + N_°(R O0 R ) _( )

IN00 low R N:°0w] Ou, "_+ L-k--(R 00 ) + R _J _(N)j dS
(3.2)

3.2.3 EXTERNAL VIRTUAL WORK

Mathematically the stiffened shell is considered closed at x = -t-_. The work done

by hydrostatic pressure on an enclosed volume can be derived from a potential energy

functional, since hydrostatic pressure is a conservative load. However, the infinite volume

is inconvenient to deal with. Instead, a repeating volume element of the structure that is

of finite size can be considered, and the potential energy functional for it can be derived.
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Fig. 3.1 Enclosed volume of a repeating unit.
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An enclosed volume to contain the pressurized medium can be modeled by joining the

edges of the repeating unit to the axis of revolution of the cylinder as shown in Fig.

3.1. The shaded portions are assumed to represent diaphragms (or end caps) enclosing

the so-formed pie-shaped volume. These diaphragms do not resist deformation of the

repeating unit, but act to transmit loads normal to the edges of the repeating unit due to

the internal pressure. Under the action of uniform internal pressure, the right cylindrical

sector expands to acquire larger volume. Thus, for the deformed volume of Fig. 3.1, the

external virtual work for the shell due to internal pressure is written as

_/_;hell _ -" " ps_'_/vshell"_- V r VpdI;lA_shell (3.3)

_shellwhere ---ps is the virtual work done by the internal pressure acting on the deformed

panel area A'B'C'D', and xu_sheU'_''pd is the virtual work done by the internal pressure acting

on the deformed diaphragm areas O'A'B' and O"C'D'. The virtual work done by the

internal pressure acting on the deformed panels O'A'C'O" and O'B'D'O" is zero due to

the periodicity of displacement boundary conditions at 0 = +O.

Expression for ,_W sheu
v,.pS

Consider a material point at P on the undeformed reference surface of the shell that

goes to point P' on the deformed surface. Let the position vector of point P be R and

of point P' be 1_* , and further let the displacement vector from point P to P' be O, as

sllown in Fig. 3.2(a). In terms of components along the directions of unit vectors [, t(0),

and fi(0) of a generic point on the undeformed surface, these vectors are represented as

1_ = x i + R fi(0) (3.4)

= u(x,o) i + + w(x,O)

P5 =K+O

(3.5)

(3.6)
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Fig. 3.2 Position vector and elemental area of the deformed upper surface.
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Using the geometric property of the cross products of position vectors (Fig. 3.2(b)), an

elemental area dS* of the deformed surface can be written as

oil- Otf-
dS" n" - dx x dO (3.7)Ox --_

where n* is the unit vector normal to the deformed surface element. Substituting Eqs.

(3.4) and (3.5) into Eq. (3.6), using the resulting expression for P_* in Eq. (3.7), and

noting that on t and 0_ _ _fi, the following expression for tile elemental area of tile-gg= _-_-

deformed surface is obtained.

, { fi

ou ov ow dS (3.8)d5'* n* = 1+ _ 0--7 o-_

1 ou 1 + + - v)-ggR O0 R _ O0

where dS = RdO dx is the elemental area of the undeformed surface. For tile hydrostatic

pressure p acting on the deformed surface A'B'C'D', the external virtual work is given by

_]/vshell = /_S
'm (p dS* n*) • 6IJ (3.9)

where _l_ = &L(x,O) [+$v(x,O) t(O)+_w(z,O) fi(O)is the virtual (infinitesimal) displace-

ment vector, and S* is the area of tile deformed reference surface. Upon substituting Eq.

(3.8) into Eq. (3.9) and carrying out the algebra, the following expression for the first

component of external virtual work is obtained:

f/_{ 1,g)v _w lOuOw 1 ?)u,

± ( o_ I o_ Ov }On) Ou [1+ +w)] ] 6w dSR'0o R0o0 
(3.10)

ilk which S denotes the area of the undeformed reference surface. Equation (3.10) is

expanded and the terms are rearranged to obtain the following intermediate expression

for tile first component of external virtual work:

[_(v'+ )(l+_x )+w(_ x +_N)+w]- Ox 1+ w

±(OvOw OvO ) omo O Ov+ R'&OO OOTx _+-_(-gxOO OO_)_v+-_(OxOO

(3.11)
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Thetermscontainingderivativesof thevirtual displacementsin Eq. (3.11)areintegrated

by parts,and thenthe termsarefurtherrearrangedto obtainthefollowingexpressionfor

thefirst componentof externalvirtual work functional:

1 Ow Ou

+ 5-R(Ox OO
l

1 Ov Ow 1, Ow Ou
-l

+5 Ox -
O

1 1 I Ow Ovx 1 (wOU+ P {[-_' _(v2+w2)+5-RtvN-w_J]6_+5-R N
-®

Ow 1 _0 Ou _w_ +_ R dO-_N) _v+ _(_ -vN) ,-_

+ w 2)(1+ Ou ) Ou 1Or) 10vOwOx + _( _ + -_oo + _ (_ oo

Ow Ou 1 Ou Ov Ou Ov ]00_)v+_(0x00 O0 0x )W + W dS

Ov Ow )O00x u

(3.12)
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Expression for 6>V_ en

The stiffened shell has a periodic symmetry about its axis of revolution in the sense

that a rotation of the structure through integer multiplies of 20 brings the structure into

self-coincidence. That is, after a rotation through 20 about the axis of revolution the

stiffened shell is indistinguishable from its original position. Since the pressure load is

spatially uniform, the deformed structure exhibits the same periodic symmetry about the

axis of revolution. That is, a rotation of the deformed stiffened shell through an integer

multiple of 2® about the axis of revolution brings the deformed shell into self-coincidence.

The 0-curves of the shell's reference surface at x = +l, both in undeformed and

deformed states, serve to define the end diaphragms. In the undeformed state the 0-curves

are circles and the end diaphragms are circular areas of radius R. The diaphragms in the

deformed state are defined by the displacement of diametrical lines. Deformed images

of diametrical lines remain straight and pass through the axis of revolution. Consider a



Axis of revolution

!

rp

D

Fig. 3.3 Image of diameter POQ in the deformed state is
P'O'Q' with O' on the axis of revolution.
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typical diameter PQ in the undeformed diaphragm as shown in Fig. 3.3. The material

point at P displaces to P' and the material point Q displaces to Q'. The displacements

of particles P and Q are such that the vector pTQr passes through the axis of revolution

at point 0'. The deformed image of every diametrical is a straight line through the same

point on the axis of revolution. Thus, the point O' on the axis of revolution is common to

every displaced diametrical line. Tile displacement of the center of the diaphragm from O

^

to O' is denoted by u0i. The position vectors of points P' and Q' relative to point. O are

r> = up i + vp i(O) + (R + wp) h(O) (3.13)

r_ = uQ _- vq {(e)- (R+ wQ) n(e) (a.14}

in which unit vectors t(0) and fi(0) are tangent and normal to the &curve at P. (Note that

point Q is on tile opposite end of the diameter so its tangent and normal are -t(O) and

-h(0), respectively.) The displacement of the center of the diaphragm is determined by

the fact that points P', O', and Q' lie on a straight line. In vector notation this straight

line condition is

(_-u01)×(rra-u01) = 0 (3.15)

Substituting Eqs. (3.13) and (3.14) into (3.15), and carrying out the cross product results

in two independent conditions, which are

UQ - uo R + WQ

Up -- u 0 R + Wp
(3.16)

VQ R + wQ

Vp R q- Wp
(3.17)

Solve Eq. (3.16) to get

no=f, up + f2 uQ (3.1S)

where

k

R+wQ

2R 'b wp --1-WQ
(3.19)
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R + wp
& = (3.20)

2R + wp + wQ

From Eqs. (3.19) and (3.20), it can be seen that the sum fl + f2 = 1. Equation (3.18)

shows that the displacement of the center of the diaphragm can be written in terms of the

displacements of material points on the opposite ends of the diameter of the undeformed

diaphragm. Since all deformed diametrical lines pass through O t, displacement u0 is

independent of 0.

Since displacement u0 is independent of 0, the periodicity of the deformation pattern

of the 0-curve can be used to write u0 in terms of the displacements of points on the 0-

curve in the first unit cell. Consider an odd number of unit cells, such as N_ = 3 as shown

in Fig. 3.4(a), and an even number of unit cells, such as Nr = 4 as shown in Fig. 3.4(b).

For the case of N_ = 3, identify point P as C and point Q as F. A clockwise rotation

of 20 = 2_-/3 brings diameter CF to position EB, and the conditions of self-coincidence

implies

uF = UB ,VF = VB ,WF = WB (3.21)

where point B is at the stiffener (0 = 0) in the first unit. Using Eq. (3.18) tile displacement

of the center of the diaphragm can be written as

u0 = fl u(®) + f,_ u(0), N,_ odd (3.22)

with

R + w(0)
fl =

2R + w(®) + w(0)

+ w(O)
h=

2R + w(O) + w(O)

in which displacements at C correspond to 0 = O and displacements at B correspond to

0 = 0 in the first unit. For the case of N_ = 4, diametrically oppposite points must have

the same displacement components due to periodicity. That is, a rotation of diameter CG
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Fig. 3.4 Stiffened shell of (a) three, and (b) four unit cells.
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in Fig. 3.4(b) through N_/2 multiples of 20, i.e., 7r radians, implies uc = ua, vc = va,

and wc = wa, with 0 = O for point C in the first unit. Identify points C and G with

P and Q, respectively, in Eq. (3.18) such that the periodicity condition gives u0 = u(O).

Similar considerations for diameter BF connecting the two stringers leads to u0 = u(0).

Therefore, for even number of unit cells one gets

u0 = u(O) = u(0), lV, eveTz (3.23)

The condition for displacement u0 for N_ odd is more complex than for .hr_ even.

Consider a point S in the circular sector OAB of the diaphragm at x = l as shown

in Fig. 3.1. The polar coordinates orS are r and 0 with 0 < r G R and -® <_ 0 _< ®.

The particle at S displaces to point S' in the deformation. The position vector of point

5" relative to point O is

?(_,_,0) = r fi(0) + _(t,r,e) (3.24)

in which r fi(0) is the position vector of point S, and 6(1, r, 0) is the displacement vector

of S. Since the deformed image of a diameter is a straight line, the displacement vector

for point S can be interpolated by

^ "r ^

" [u(l,O) i+ v(/,t_) _(t_)+ w(l,O) fi(0)] + (l - _)u0(/) i (3.25)_(_, _,0) =

in which uo(l) is the axial displacement of the center of the diaphragm at x = l, and

it is given by Eq. (3.22) if N_ is odd and Eq. (3.23) if N_ is even. At r = R the

displacement vector for the diaphragm coincides with displacement vector of the shell's

reference surface at x = l. The virtual work of the pressure acting on the deformed

diaphragm O_A'B t referenced to the undeformed diaphragm GAB is

O R

,,p_ = p ,--_- dO x _ dr),=_ ° __(t,r,O) (.3.26)at x=l

--® 0
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SubstitutingEqs. (3.24)and (3.25)into Eq. (3.26)resultsin the followingexpressionfor

tile internal virtual work.

• Vpd =
x.=l _u0+ _[_u(t,0)-,u0] _6,, _w _=ll ( Ov ( Ow _ v) rdr dO1 ou 1+ l,,vb-gq-w) 1 00 w7_o0

-_[u(/, O)- Uo] _ 1 -4-
(3.27)

A similar procedure is used on the circular sector of the undeformed diaphragm at

x = -l. Note that the displacement of the center of the diaphragm at x = -l is uo(-l),

and it is given by either Eq. (3.22) or Eq. (3.23) as long as the displacements of the

0-curve at x = -l are used in these formulas. The external virtual work of the hydrostatic

pressure on the deformed sector O"C'D' is

® R

_A;shell at // (0_ Or-_ dr) e6_(-l,r,O) (3.28)• Vpd = -- p dO X,:=-t ' O0 -:dT-r x=-_
-®0

where l is replaced by -I in Eqs. (3.24) and (3.25). The total external virtual work of the

pressure on the diaphragms is the sum of the virtual work of the pressure on each of them.

Expanding the determinate in Eq. (3.27) and performing integration with respect to polar

radius r (since r appears explicitly in the integrand), and following a similar procedure for

tile virtual work done by the pressure acting on the end diaphragm O"C'D' (Eq. (3.28)),

the second component of the external virtual work is written as

®

w; o. : p [R+2w+ -f(v-+w)+ (w - v-g) + ] (
-®

1 Ow Ou (R + w)] 6v+ _[(N - v)(u- ,,o)-

Ov }+t+ -_1 [v__Ou_ (u - uo ) (R + w + -_ ) ] 6w -i R d O

(3.29)

The total external virtual work for the shell due to internal pressure can now be

obtained by substituting Eqs. (3.12) and (3.29) into Eq. (3.3). In this substitution process,
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the line integralsat edgesx = -+-l from Eqs. (3.12) and (3.29) combine and simplify.

(Several terms combine to add to zero, and integration by parts in 0 are performed to

eliminate derivatives of the virtual displacements. Periodicity of the displacements at

t? = +O result in vanishing of the boundary terms in the integration by parts.) After

these manipulations, the following expression for the total external virtual work for shell

results:

l

(OwOu Ow=.__]Ou-t----(10uOv OuOV)w+w dS÷p ,w--+
3R' Ox O0 O00x "v 3R'0x O0 O0 Ox 3 [ Ox

-l

V-_xjOW] [ -3(U-_xl'Ow oxOU] l[Ou Ov] }+_- - -_--) +3[ _

+,_ p (k+ N 5+T)+_-_(_N-_ N)_o

(3.30)

On the basis of periodicity of the shell's displacements at 0 = +(3 edges, it can be shown

that the first of the liue integrals in Eq. (3.30) vanishes, and the final result for the

external work functional for the shell under hydrostatic pressure is

i_¢[ 1 , Ou Ou lO'v) 1 OvOw OvOw)l'_'shetl =p W ÷ ÷ W2)(1 ÷ ÷ W( ÷ ÷

1 Ow Ou

+_(_oo
®

+
-®

Ow Ou)v + 1,0uOv Ou Ov ]O00x -_ (-_x O0 O00x ) w dS

u 1 Ov Ow
0,, _ ) + -_ _ v -yg )_ )(-5 + (w - _o

R dO

(3.31)
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3.3 STRINGER

For a symmetrical cross section, the internal virtual work statement for tile stringer

is
l

51/'ustringer /--int = [Nzs&:_s + Alos_nos]dx (3.32)

-l

ill which N_ is the axial force in the stringer, Mo_ is the bending moment, c_:_ is the

extensional normal strain of the centroidal line, and _0_ is the change in curvature of the

centroidal line. Based on Euler-Bernoulli nonlinear beam theory, the strain-displacement

relations for stringer are

( "q-s = u's + w'_) 2 _o_ = - w_ (3.33)

in which the prime denotes an ordinary derivative with respect to z. Substituting Eq.

(3.33) into Eq. (3.32 I) results in the following expression for internal virtual work for the

stringer.

l

_51A?stringer / [__ra. s _5 Ous ) r OWs _5( Ows 02ll)3"int (--_-x + A_:s---O-_x Ox )- Mo_ _5(_--_y-_)] dx (3.34)

-l

Hooke's law for the stringer is

Nxs = (EA)_exs Mo_ = (ES)s_Os (3.35)

3.4 RING

For a ring with symmetrical cross section, there is no out-of-plane bending and

torsion. Hence, the statement of internal virtual work for the ring is

_5_a:_i'_ f [No,.&e,.• "int -:

--®

+ M_5nx_]Ro dO (3.36)
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in whichNor is the circumferential force, Mx_ is the bending moment, e0_ is the circum-

ferential normal strain of the reference arc, na:_ is the change in curvature of the reference

arc, and Ro is the radius of ring reference arc. Based on small strains and moderate

rotations, and the kinematic relations for the ring are

1 1 2

1 -

1

(3.37)

in which the over-dot denotes an ordinary derivative with respect to 0. Substituting Eqs.

(3.37) into Eq. (3.36) results in the following expression for internal virtual work for the

ring:

®

_lA?ring / { Nor vr• "int = -'-d--(._o-_"_ -I_0
-6)

NOr(ZRo oo

Hooke's law for the ring is

(3.38

No_ = (EA)_eo_ AI_ = (El)rn_:_ (3.39

3.5 INCREMENTAL VIRTUAL WORK

The internal and external virtual work functionals obtained above contain terms

that are nonlinear in the displacements times virtual displacements of the first degree.

Newton's method is employed to solve the nonlinear equilibrium equations that result

from the principle of virtual work. It is convenient to derive the incremental virtual

work functionals for each structural element for implementation of the update procedure

in Newton's method. At fixed values of external loads, consider replacing the (actual)
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displacementfield in the virtual work functionalof anelementby anapproximation.Let

this appro_mationbea knowndisplacementfield plusa smallincrementaldisplacement

field. Theapproximationissubstitutedinto thevirtual workfunctionalof theelementand

the functional is linearizedin the incrementaldisplacementfield. As an exampleof the

replacementprocedure,thecaseof shellis explainedin detail. Let the shelldisplacement

field

(f} -- {f} + {_,f} (3.40)

in which {f} on the right hand side of Eq. (3.40) is assumed to be known and {Af} is

an unknown small increment. As a result of replacement illustrated by Eq. (3.40), the

strains and curvatures become

{_'} {Q + {A_'} (3.41)

{_} -- (t/} + {aa} (3.42)

in which {AQ and {At/} are linear in {Aft}. The stress and moment resultants are

replaced as

{IN} -- {iQ} + {A1Q} (3.:t3)

(I_'I} q {1VI} + (_M_'I} (3.44)

in which {A1N} and {Ar¢i} are determined by the constitutive law (Eq. (2.69)) by ,sing

incremental strains and curvatures; viz., {A/'} and {AE}.

The virtual displacements are not incremented since they are any of a set of kine-

matically admissible (test) functions and it is only the (actual) displacements (in the space

of trial functions) that are being determined by iteration. Consequently,

(Af) = o
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Substituting the replacements (Eqs. (3.40) through (3.44)) in the virtual work functional

(Eq. (3.2) or (3.30)), and linearizing in the increments results in the incremental virtual

work functionals. The above procedure is repeated for the stiffeners as well to obtain

respective incremental virtual work functionals.

3.5.1 SHELL

The linearized incremental strains and curvatures for shell are obtained by following

the incremental procedure described above. Substituting Eq. (3.40) to (3.42) into Eqs.

(3.1), (2.10), (2.11), and (2.63) ill conjunction with Eqs. (2.16) and (2.17), results in the

following linearized incremental strains and curvatures for shelh

O-_u Ow)(OAw)Z_xx = -57- + (5-; Ox

1 OAr Aw 10u, v 10Aw

Aeoo - R O0 +--if- + ( R O0 R )( R O0

OAr 10Au OAw

_° = -5_ + -_ o----g-+(--:7---) ((J .T

&._gxx -- --
Ox 2

10_'Aw 1 OAr
Anoo - +

R _ 002 R; O0
202Aw 1 OAr

-_K_o- R OzO0 +-R 0---_

10w v Ow 10Aw Av

RO0 R)+(Tx )(R 00 R

O;Aw

(3.46)

(3.47)

) (3.48)

(3.49)

(3.50)

(3.51)

Similarly tbllowing the replacement procedure explained above, from Eq. (3.2) the lin-

earized incremental internal virtual work for the shell is obtained as

i_ ) = AN_(_(_x ) + _ df(Ou-_)- (R O01Ow _) +v At\X°R Ou,o._.

s '00 w1 [+ R "R O0 R " + R Ox J6v+ ANs0W----ff-- 0x

[ANoo AMoo _, Ov ANoo, 02u, AMoo _.02w
+ L---g-- + _] t -_ ) + --g-ou, - ZM=.,5( _ ) _ o_-gOt.)

A__fs 02w [ Ow low _)s 10Aw2 r°_(O-_x)+ A-N='_+AN_°(RO0 +Nx°(R O0

_VR )+ 5"rI'_=O_W1_(O_')OXJ Ox + [[AN°°R ( R10u,o0 RV)+ AN_°R Owox

+ N_o OAw Noo l OAw Av ] Ou, "_
R Ox +---R-(R O0 R)J jb(-_)dS,

(3.52)
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andfrom Eq. (3.30),the linearizedincrementalexternalvirtual work for the shelldueto

internalpressureloadis obtainedas

's('a_v;he")=P _ Ox O0 O0 Oz + Oz O0 O0 _ j_u+ Aw[
+ _(vAv + wAw) + (Aw Ov 0Aw 0Av ,, Ow_ - v---SV-+ w oo___ _v-Sg)],_(. )

1 [vOAW . Ov . Ow 0Avl Ou [At, Ou+ "_ Ox AU'_x + AV_xx w--_x j (5(_--_) + L--R--(1 + _x )

v OAu 1 OAw Ou OAw Ou Ow OAu Ow OAu)]+ R Ox +-_ (Ox O0 O00x + Ox O0 O0 Ox _t,

[ Ou] Ov [Aw l OAu1 Ow OAu OAw Aw--_ _( )+ + w--+ _ A_'-gF- _--N- + u O--V-- _ -if _( Ox
Ou OAw, Ov. w, OAu Ou Aw

1 OAr 1 OAu Ov OAu Ov Ou OAr 0u 0Av l+ R O0 +-_ ( Ox O0 O00x + Oz O0 O00:r ) (_w

1 ,:XvN --5V v--dV _ • T_ Ox Ox+ _ - ". + - Au _( ) + Au-- - v--
0

o_ .avOul,5(ow.l { 1 o_
-®

+/kW_o _ O/kW, OqV OW O/kV . ___3),--$0--)_o+ (,,-_ - v--gy)a_o+ --5-g-(-5+

+ N(-5- + -U)- [ + (<,v + _A_)](_,_ _o)

- [ + _-_(v-+ _-)](_ - _X_o)R dO -_
(3.53)

It may be noted that Eq. (3.53) leads to a symmetric load stiffness since constant pressure

acting on a fully enclosed volume is a conservative force system.

3.5.2 STRINGER

Following the incremental replacement procedure Eq. (3.33) results in the following

linearized incremental strains and curvatures for the stringer:

Ae,_ OAu_ Ow_)(OAw_
- Ox +(--_-x _) (3.54)
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O_-Aws

Am: s = Oz 2 (3.55)

Simularly, from Eq. (3.34) the linearized incremental internal virtual work for the stringer

is obtained as

02w_ )] dx- _M_, _(-yy2

(3.56)

3.5.3 RING

The application of incremental replacement procedure to Eq. (3.37) results in the

following linearized incremental strains and curvatures for the ring:

10Av_ Aw,. 10w,. vr )( 10Aw,. Ave) (3.57)
A_o_ - Ro O0 + _ + ( Ro O0 Ro Ro O0 Ro

10Av_ 1 c92Aw.
A_. - ._ _ (3.58)

R o O0 R 5 002

Similarly, from Eq. (3.38) tile linearized incremental internal virtual work for the ring is

obtained as

®

--, , ,nt , = L--N--O(
-®

[ 5No. AM_ ] Ow ANo_
+ L--N-o+--kT-aJ R--T-

+--k--_o Ro oo Ro (_-_-)

10wr ]Vor(_vr I OAWr)) _vrRo 00) + Ro ' Ro Ro O0

[ ANo_ 10wr
,_w. + t---h-_o(R ° oo

AM_:_ i_ 02w_ }R_ (_ ) Ro dO

V r

Ro )

(3.59)

3.6 DISPLACEMENT CONTINUITY

For the symmetrical cross section stiffeners, the repeating unit is symmetric about

x- and 0-axes, and the only non-zero displacements for the stiffeners are the axial and

64



normal displacements. For a symmetrical cross section, there is no out-of-plane bending

and torsion of the ring. Thus, axial displacement of the points on the reference arc of the

ring, UT, in Eq. (2.53)is zero. In addition the rotations about 0- and (-axes, (_0_ and

¢.._, in Eqs. (2.54) and (2.55) for the circumferential and normal displacements of the

ring, are set to zero. Hence, for the symmetrical cross section stiffeners, the displacement

continuity constraints imposed between the shell and stringer at their interface are given

by Eqs. (2.73) and (2.74), and the constraints imposed between the shell and ring at their

interface are given by Eqs. (2.77) and (2.81). Note that in Eq. (2.77) the twist rate rT is

equal to zero for a symmetrical cross section ring.

The advantage of enforcing the displacement continuty constraints, as opposed to the

strain compatibility constraints (as was done by Wang and Hsulg), between the discrete

elements is more evident in the nonlinear analysis. The displacement based continuity

constraints result in equations which are linear in displacement and rotations of the el-

ements (Eqs. (2.73), (2.77), etc.). On the other hand the strain based compatibility

constraints would yield nonlinear equations in terms of the displacements and rotations

of the structural elements (see e.g., Eqs. (3.1), (3.33) and (3.37)).

3.7 AUGMENTED VIRTUAL WORK TERMS

Based on the discussion for the displacement continuity constraints in the foregoing

section, the augmented (or external) virtual work terms for the shell due to the interacting

loads are given by

(3.60)

-
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Similarly, the augmented(or external)virtual work termsfor the ring due to the inter-

actingloadsare

O

-0

(3.61)

The augmented (or external) virtual work for the stringer due to the interacting loads is

still given by Eq. (2.88). The variational form of tile constraints in the nonlinear analysis

are
l

/ [_,g_, +_A.,g.]d_ = o
-1

®

-0

_Q{[u(t,0)-.(-_,0)] - [us(_)- _s(-t)]} = 0

(3.62)
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CHAPTER 4

FOURIER APPROXIMATIONS AND SOLUTION PROCEDURE

4.1 INTRODUCTION

The structural model is periodic in the circumferential and longitudinal directions

both in geometry and in material properties. With respect to the applied internal pressure

load, which is assumed spatially uniform, the model is periodic in the circumferential

direction. For a closed-end pressurized shell, in which closure is mathematically presumed

to occur at x = +_, there is an axial stretching that corresponds to a non-periodic

axial displacement field. However, for each equal length segment of the shell obtained

by sectioning it perpendicular to the z-ads, the total axial force is the same. Thus. the

elongation of each segment is the same. These periodic conditions and uniform axial

extension due to a closed-end pressure load permit definition of a structural repeating

unit or unit cell model as shown in Fig. 1.2.

The periodic nature of the repeating unit or unit cell model requires that the stress

and moment resultants, and the conjugate displacements and rotations for the discrete

elements are also periodic in nature so that the repeating units, when placed together,

form the complete stiffened cylindrical shell model. An analogy to this approach can be

a jigsaw puzzle with "fully interlocking" identical pieces. This implies that the boundary

conditions for the repeating unit are periodic in nature. The periodicity of the forces and

displacements at the edges of the repeating unit (o1" in other words, the periodicity of

boundary conditions) is ensured by assuming a Fourier Series solution to the linear elastic

and nonlinear elastic response of the repeating unit. The Ritz method is utilized and the

principle of virtual work is applied separately to each structural element. Displacements
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areseperatelyassumedfor the shell, stringer and ring. The periodic portions of the dis-

placements and rotations are represented by truncated Fourier Series having fundamental

periods in the stringer and ring spacing. The non-periodic portions of the displacements

due to axial stretching are represented by simple terms in z. The Fourier Series reflect

symmetry about the x-axis only for the repeating unit since the ring can be either sym-

metrical or asymmetrical in cross section. In this chapter the assumed Fourier Series

approximations for the actual, virtual and incremental (for nonlinear analysis only) dis-

placement fields, and the actual and virtual interacting line load intensities are presented.

The system of discrete equations is obtained and their solution procedure is outlined.

4.2 DISPLACEMENTS AND ROTATIONS APPROXIMATIONS

4.2.1 SHELL

For the shell, actual displacements of the middle surface (see Fig. 2.1) are repre-

sented as

M N hi N

u(z,O) = qoz2-7+ Z Z _,m_Sin(_,_x)Co.,(_nO)+Z Z _m.Co_(oo,x)Co_(_oO)
m=l n----O ra----1 n=l

(4.1)
M N M N

_,lx,o): Z Z v,m_Co_(:_m_)Si_(_O)+Z Z w.m_S_,(_,n_)S_(_,O)(4.2)
rn=On=l m=ln=l

AI N M N

rn=0 n=0 m=l n=l

(4.3)

and rotations of the normal are

A/ N M N

¢:_(x,O) = Z Z ¢_lmnSin(amx)Cos(fl.O)+ Z Z ¢_2,n.Cos(_mx)Cos(fl.O) (4.4)
m=l n=O m=ln=l

M" N M N

_)o(x,O) = Z Z COlmnC°s(CtmX)Sin(_nO)+ Z Z ¢O2mnSin(c_rnX)Sin(finO)
m=On----I m=ln=l

(4.5)
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"_" and /3n = ,_r. where m and n are non-negative integers. Coefficientin which am = -7 "g-

q0 in the axial displacement field of the shell represents elongation caused by either an

axial mechanical load or due to closed-end pressure vessel effects. Note that some terms

in the truncated Fourier Series of Eqs. (4.1-4.5) have been omitted. The coefficients of

the omitted terms are u200, U2m0, u_0n, w2m0, ¢x200, Cx2m0, and Cx20n, in which rn E SM

and n E SN where SM = {1,2,...,M} and SN - {1,2 .... ,N}. The rationale for their

omission is discussed in Section 4.4.

The test space of the virtual displacements and rotations is the same space used for

actual displacements and rotations. The virtual displacements are represented as

6qOX 6UlpoSin(apX),bUlpqSin(apx)Cos(_qO), _U2pqCOS(C_px)Cos(I3qO)}
5u(x,O) E t 2l '

bv( x, O) E { SVlOqSin(_qO), 6VlpqCos(opx )Sin(/3qO), _t,2pqSin( apx )Sin(_qO) }

_W( X, O) E {_Wl00,_Wlp0Cos(o@x),_Wl0qCos(_q0),_WlpqCOS((_px)CoN(]_q0),

5 w_.pq S in( apx )C os( /3qO ) },

and the virtual rotations of the normal are

(4.s)

_¢_(x, O) E {5¢xlpoSin(apx), _¢xlpqSin(apx)Cos(BqO), 5¢_2pqCos(apx)Cos(BqO)}

(4.9)

b¢O(X, O) E {_¢OloqSin(ZqO), (_¢OlpqCo$(OpX)Sin(_qO), _¢O2pqSin(opx)Sin(ZqO) } (4.10)

in whichap= _ andl3q = o_ wherepESM and qE SN.

4.2.2 STRINGER

The actual displacements of the centroidal line of stringer (see Fig. 2.2) are

hi M
qlx

Us(X)---- -_-+ Z Us,mSin(omx)_- Z Us2raCos(crmx)
m----1 m-=l

(4.11)

69



w_(z) =

M M

rn=I m----I

(4.12)

and the rotation of the normal of the stringer about the 0-axis is

M M

Oas(x) = E Cas,,nSin(a,,x) + E Ca_2mCos(a,-nX)
m---=l rn=l

(4.13)

where the coeffcients u_20 , w_20 and 00_20 are omitted. Coefficient ql in the axial dis-

placement field of the stringer represents elongation caused by either an axial mechanical

load or due to closed-end pressure vessel effects.

The virtual displacements of the centroidal line of stringer are

f _qlx _uslpSin(al, z) ,,Su_2pCos(apz)}6us(x) E , 21 ' (4.14)

(4.15)

and the virtual rotation of the normal of the stringer about the P-axis is

(4.16)

where p 6 SM.

4.2.3 RING

The actual displacements of the reference circle of the ring (see Fig. 2.3) are

u_(O)= _ u_,,Cos(3nO)
n=l

N

vdO) = _ v.,,Sin(fl,_O)

w.(O) = _ w.nCos(flnO),

7O

(4.17')

(4.18)

(4.19)



and rotationsare
N

N

Oor(O)= _ oo_Cos(/3,_O)
n----1

N

¢_._(0) = Z O.._,Sin(/3nO)

where the coeffcients u_o and O0_o are omitted.

The virtual displacements of the reference circle of the ring are

(4.20)

(4.21)

(4.22)

,s,,,(o) _ {,_u,.qCo_(Zqo)} (4.23)

(_w_(O)_ {(%,,o,_wrqCos(/3qO)},

and the virtual rotations are

(4.26)

where q E SN.

6Qo_(O)_ {_¢oTqCos(/3qO)} (4.27)

(4.2,q)

4.3 INTERACTING LOAD APPROXIMATIONS

4.3.1 SHELL-STRINGER

The distributions of the actual interacting line loads between the shell and stringer

(see Fig. 1.3), or Lagrange multipliers, are taken as

M AI

Axs(X) = Z AxslmSin(ctmx)+ Z Axs2mCo_(earnX) (:1.29)
m=l ni=l
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M M

m=l m=l

(4.30)

where the coefficients Axe.so and A:2_o are omitted.

The test space of the virtual interacting loads is the same space used for actual in-

teracting load approximations. The shell-stringer virtual interacting loads are represented

as

6A_s(X ) E {6,\xsavSin(avX), 6A_s2pCos(apx )} (4.31)

6A,_(x) • {_A,,lpSin(apx),_A.,_2vCos(avx)}, p • SM (4.32)

4.3.2 SHELL-RING

The distributions of actual interacting line loads between the shell and ring (see Fig.

1.3) are taken as
N

n=l

n=l

(4.33)

(4.34)

N

_._(0) = E A_,_Cos(/3,,O) (4.35)
n----O

Ao_(0) = E Ao_Cos(O_O) (4.36)
n----1

N

Az_(0) = Z A_Sin(fl, O) (4.37)
n_l

where the coefficients A_o and A0r0 are omitted.

The test space of the virtual interacting loads is the same space used for the actual

interacting load approximations. The distribution of the shell-ring virtual interacting

loads are taken as

(_/_xr(0) • {_/_xrqCOS(]_qO)} (4.38)
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,s,xo,(o ) {,s),o,qs i,,{ )}

_Azr(0) E {6Azrq,-,cin(/3qO)}, q E Sh'

(4.39)

(4.40)

(4.41)

{4.42)

4.4 TERMS OMITTED IN THE FOURIER SERIES

Terms omitted in the truncated Fourier Series for the displacements, rotations, and

interacting loads are determined from the rigid body equilibrium conditions for the ring

and stringer, and from the displacement continuity conditions between the shell and stiff-

eners. The external virtual work for the stringer and ring must vanish for any possible

rigid body motions of these elements.

4.4.1 RIGID BODY EQUILIBRIUM FOR RING

Consider the ring in its entirety, that is, as made up of an integer number of repeating

units around its circumference. Let 0 be the global coordinate such that 0 _< o _< 27r (see

Fig. 3.4). The global coordinate 0 is related to the local coordinate 0 in the i th repeating

unit by 6 = Oi + O, i = 1,...,N_ where N_ is the total number of repeating units and

2r
¢i = (i - 1)_-T. Rigid body motion of the ring is considered as a translation of its center

point O to O' plus an infinitesimal rotation about point O'. The displacement of a generic

point P in the ring is then given by

lJ Rigid = lJTranslatio n + lJRotation (4.43)

The ring is referred to a fixed cartesian system (x,y,z) with unit basis vectors i. j, and

1_ as shown in Fig. 4.1. Also it is convenient to use cylindrical coordinates (,_',0, R0 + ()
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Fig. 4.1 Cylindrical coordinates (x, ¢, RO+_) of a typical

point P in the ring.
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with unit vectors i, {(¢),and fl(¢) as shown in Fig. 4.1. The translational displacement

of point O is given by l_JTranslation -- Ux] + Uyj + Uzl_. For infinitesimal rotations, the

rotation can be represented as a vector f_ = f}_-[ + ftyj + ft_,l¢. Tile displacement of P

relative to O due to rotation is

V Rotatiort "_ _ X 15 (4.44)

where 15 = x _ + (R0 + (,') 5'i7_¢ j + (R0 + ¢) Co.s0 1_. Thus, tile total displacement vector

in cartesian components becomes

rJnig,d = [U_ + (R0 + ¢)ftyCos¢ - (a0 + ¢)fL.Si7_¢] i

+ [Uv - (Ro + C,)FtxCos¢ + xf}z] j (4.45)

+ [uz + (no + ¢)f_si,_¢ - xf_] i_

In Chapter 2, the displacement vector of a generic point P is represented ill cylindrical

coordinates as

I?R_,_g = U_(x,¢,i)i + 1.;(x,0,¢){(¢)+ w,(.r,¢,¢)/_(¢) (4.46)

where the cylindrical coordinate components, U_, 1,;- and W_, are given by Eqs. (2.53) to

(2.55). Note that the locaJ polar angle 0 has been replaced by the global polar angle O.

The direction cosines between the unit vectors in cartesian and cylindrical coordinates are

7

1 1 0 0
t 0 Cos¢ -Sin0
fl 0 SinO Coso

Titus, Umgi4 in cartesian components, Eq. (4.45), can be transformed to cylindrical

components, and then like components can be equated between it and Eq. (4.46). As a

result of this process the displacements of the reference arc of the ring beconie

u_ =U_ + Ro(f_vCosO- f_.Sin¢)

t,_ =UyCoso- U,. Sinq5- Rof_x (4.47)

w_ =UuSin¢ + UzCos¢,
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and the (infintesimal)rotationsbecome

cPo_ =flyCos¢ - fl_Sin¢ (4.48)

_,,- =f_uSino + f_CosO

From the last two of Eqs. (4.48), the rate of twist r_ as given by Eq. (2.57) vanishes. It

may be noted that the strains and changes in the curvatures in Eqs. (2.57) also vanish

identically for all values of Ux, Uu, U_-, f_x, f_y, and f_z.

Substitution of displacements and rotations from Eqs. (4.47) and (4.48) above into

the external virtual work for the ring, Eq. (2.89), results in

6)4:Rigid = _[F,:r(_Ux + Fv,.6Uy + F:r6Uz + C_r6f_x + Cyr6gty + Cz_6[_:] (4.49)

where
_Tr

Fx_ = f ;_ (Ro + e_) de (4.50)
0

27r

Fu, = / [Ao_ Cos, + A._ Sine] (Ro + e_) dO (4.51)
0

2_r

Fz_ = / [_-__ CosO- ,_o_ Sine] (Ro + e_) de (4.52)
0

2_r

C_ =/)_0_ (Ro + e_) 2 de (4.53)
0

2_

Cu_ = / {[RoA_-_ + Ao_]Coso + A_Sin¢}(Ro + e_) de (4.54)
0

2r

C'._ = / { - [Ro,_z_ + Ao_lSin¢ + A,_Cos¢}(Ro + e,.) de (4.55)
o

Equation (4.49) represents the external virtual work for the complete ring, and is obtained

by replacing the local polar angle 0 in Eq. (2.89) by the global polar angle ¢. Since the
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external virtual work for the ring in Eq. (4.49) must vanish for any possible rigid body

motions, the components of the force and moment resultants defined in Eqs. (4.50-4.55)

should vanish individually; i.e., F_:T = F_, = F,_ = C_ = Cy_ = C,,r = 0. Consider the

force resultant in y-direction for the complete ring as given by Eq. (4.51). Substituting

¢ = 0i + 0 and writing the integral as a sum over all units, one gets

/_Fr

Fy,. = E[FtCos¢i + F_5'in_)i] (4.56)
i=1

in which
O

Ft = / [,\o_ CosO + A-T 5'inO] (Ro + e_) dO

-6)

®

r. = / [,_= Coco - ,_o_SilO] (R0 + _,) dO
-(9

In the i th unit the force component Ft is tangent, and component F. is normal, to tile

ring at ¢ = 0i. Since the magnitudes of tile components Ft and Fn are the same for each

repeating unit, Eq. (4.56) can be rewritten as

,,% N,

F_, = r, _ Co.,oi + V,_ Si,,®i (4.st)
i=1 i=1

For the complete ring Y'_iN=*l('osoi = _iv=_l,S'inOi = 0. ttence, the total force resultant F u,.

is equal to zero. Similarly, it can be shown that the force component F:,, in Eq. (4.52),

moment component C v,- (Eq. (4.54)), moment component C:,. (Eq. (4.55)). all vanish

for a complete ring. Thus, the rigid body motions that lead to non-trivial equilibrium

conditions are the force and moment resultants in the x-direction. These resultants must

vanish for each repeating unit. Hence. the non-trivial z-direction equilibrium equations

are

and

O

/
-(9

(9

/
-(9

Ax,,(0) (R0 + e_) dO = 0

AOT(0) (R0 + e_) 2 dO = 0

-g(4.:)_)

(4.5.O)
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4.4.2 RIGID BODY EQUILIBRIUM FOR STRINGER

For tile stringer the rigid body motions are spatially uniform z-direction and z-

direction displacements. (A rigid body rotation of the stringer in the x-z plane is not

considered since this motion would violate longitudinal periodicity of the repeating units.)

Vanishing of the external virtual work for an arbitrary rigid body displacement of the

stringer in the axial direction leads to the r-direction equilibrium equation

l

/ Axs(x)dx=0
-l

Similarly, the equilibrium equation for a rigid body displacement of the stringer m

z-direction is
l

f ),:s(z)
-1

4.60)

the

dx = 0 (4.61)

4.4.3 TERMS OMITTED

Equilibrium Eqs. (4.58), (4.60) and (4.61)imply that coefficients

Ax,.o = 0 Azso.o = 0 A:_'.,o = 0 (4.62)

in the Fourier Series for the interacting loads, and these conditions have been taken into

account in Eqs. (4.33), (4.29), and (4.30). The sine series for A0_ given in Eq. (4.34)

satisfies the equilibrium condition given in Eq. (4.59).

Consider the variational form of the constraints, Eqs. (2.90) and (2.91), for the

spatially uniform components of the virtual interacting line loads. These equations are

N

[,U200 It ' ¢sOOs20)]_,_.:rs20 0 (4.63)-  ¢ 200 +  (u20 - (us. 0 + =
n=l

N

[ZWlOn--Ws20]_/_zs20 : 0 (4.64)
n=O
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M

t t e_¢0_o)] SA_o 0 (4.65)- + E t  .mo-  ox.,m0/- + =
rn= l

Since these equations are satisfied on the basis that _A=s20 = 0, _A,,_._o = 0 and

&\x_o = 0, consistent with Eq. (4.62), the bracketed terms in Eqs. (4.63) to (4.65)

do not necessarily vanish. The implication that these bracketed terms in E(ls. (4.63) to

(4.65) do not vanish is that displacement continuity conditions are not satisfied pointwise.

Pointwise continuity can be achieved by taking each Fourier coefficient appearing in the

bracketed terms of Eqs. (4.63) to (4.65) to be individually zero. Fourier Series given in

Eqs. (4.1), (4.4), (4.11), (4.13), (4.17), and (4.21) reflect this choice. Moreover, Fourier

coefficients u200, uso_0, and u_0 represent rigid body displacement in the axial direction

for the shell, stringer, and ring, respectively, and setting them to zero can be justified

on the basis that rigid body displacement does not contribute to the deformation of the

structural elements. Since Fourier coefficient w_.o0 represents rigid body displacement of

the stringer in the -direction, it would seem that it should be set to zero as well. However.

to maintain continuity between the stringer and the shell in the z-direction, the condition

N

_'u'lo,_- ws20 = 0 (4.66)

is imposed to determine w_._0 after obtaining the solution for the displacement components

that deform the shell; i.e., Fourier coefficients wl0n, 7_= 1, ..., N, are taken to be non-zero

independent degrees of freedom since the stringer coefficient ws20 is not a part of the

solution vector.

Finally, consider the constraint equation associated with _A0_0, the spatially uniform

component of the interacting moment intensity, which is omitted in the series given by

Eq. (4.36). Derived from Eq. (2.91), this constraint equation is

AI

[_--_ OmW2rn0-t- (Por0]_iA0,-0:0 (4.67)
m----1
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The constantcomponentof the twist, 0_0, is equated to zero from the considerations

associated with Eq. (4.65). Consequently, a non-zero value of the uniform component of

the interacting moment intensity, A0_0 _ 0, would not contribute to the equilibrium of the

ring, since Ae_0 and ¢0_0 are conjugate variables in the external work for the ring (refer to

Eq. (2.89)). Since eel0 = 0. it is necessary that Ae_0 = 0 to achieve consistent conditions

for the torsional and out-of-plane bending equilibrium of the ring. With bAe,.0 = 0 in Eq.

(4.67), the bracketed term does not necessarily vanish, and as a result pointwise rotational

continuity betwen the shell and the ring is not assured. Pointwise rotational continuity is

achieved if the coefficients w2m0 = 0, m = 1.... , M, as is done in the Fourier Series for the

normal displacement of the shell given by Eq. (4.3).

4.5 DISCRETE EQUATIONS AND THEIR SOLUTION

The Ritz method is used to obtain the system of discrete equations. The principle

of virtual work is applied separately to the shell, stringer, and ring. The virtual work

functionals are augmented by Lagrange multipliers to enforce kinematic constraints be-

tween the structural components of the repeating unit. Discrete equations for the linear

analyses are solved directly. For the nonlinear analysis an iterative solution procedure is

employed.

4.5.1 LINEAR ANALYSES

The al)proximations in Eqs. (4.1) through (4.28) for the actual and virtual displace-

ments, and Eqs. (4.29) through (4.42) for the actual and virtual interacting loads are

substituted into the virtual work functionals for each structural element, and also substi-

tuted into the variational form of displacement continuity constraints. Then integration

over the space is performed. This process results in a 10MN + 13M + 14N + 6 system of

equations for the transverse shear deformation model and 6MN + 10M + 11N+ 6 system

8O



of equationsfor theclassicalmodel,governingthedisplacementsandtheinteractingloads.

Thesegoverningequationsareof the form

_h'11 O O B_I B12

0 K22 O B.u 0

0 0 /(33 0 B32

o o o
o o

0 0 0

B13 -

B23

0

0

0

0

' Ushell
^

Ustr
^

Urin9

"_str
^

"_rin9

Q

Fll

0

0

= 0

0

0

4.68)

in which submatrices Kll, K22 and /(33 are the stiffness matrices for the shell, stringer.

and ring. respectively, obtained from their respective internal virtual work statements.

The submatrices Bij,i,j = 1,2,3, in Eq. (4.68) are determined from the external (or

augmented) virtual work terms involving the interacting loads, and the constraint Eqs.

(2.73), (2.74), (2.77), (2.78), (2.81), (2.82), (2.84) and (2.86). The vector on the right-

hand-side of Eq. (4.68) is the force vector, determined from the external virtual work

terms involving pressure. The constraint equations correspond to the last three rows of

the partitioned matrix in Eq. (4.68). The non-zero elements of the matrices _ij, Bij and

Fll for the transverse shear deformation and classical models are given in Appendices A

and B, respectively. The symbolic manipulation software Mathematica is used to derive

these submatrices. The discrete vectors of unknown variables (i.e. shell and stiffeners'

displacements, and shell-stiffener interacting loads) in Eq. (4.68) for the transverse shear

deformation model and classical model are given in the following two sub-subsections.

4.5.1.1 TRANSVERSE SHEAR DEFORMATION MODEL

The discrete displacement vector for the shell is the (10MN + 3M + 3N + 2) × 1

vector

^ ^T T

in which subvectors are

U0 "_ [q0, Wl00, Vl01,10101, (_0101 , "", Vl0N, Wl0N, 0010N] T (4.70)
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"U,rn ---- [_/lm0,Wlrn0,_xlm0,_lrnl,ll2ml,Vlrnl,P2rnl'Wlml'W2ml'_xlml'0x2ml'

¢olml , 0o2ml , ..., UlmN, U_.mN, t'lmN, vo.mN, wl,nN , u'2m_,', O_lmg. (4.71)

dPx2mN, OOlmN, g_O2mN ] T

where m = 1 .... , M

The (6M + 1) × 1 discrete displacement vector for the stringer and (62¢+ 1) × 1 vector

for the ring are

fist," "= [ql,tlsll-tZs21,Wsll,tgs21,00sll,(_0s21,""UslM"as2M'

(4.72)

WslM , Ws2M , OOslM , (POs2]ll] T

firing "_ [Wr0, _lrl, t'rl, Wrl, (_xrl, eÜrl, _)zrl,..., URN', VrN, WrN, _)xrN, O0rN, 0zrN] T (4.73)

in which the term w_0 for the stringer has been omitted as discussed in reference to Eq.

(4.66). The 4M x 1 discrete interacting loads vector for the shell-stringer interface and

(5N + 1) x 1 vector for the shell-ring interface are

_str = [/\xsll,)_xs21,_zsll,_\zs21 .... ,z\xslM,"_xs2Al,/\zslM'"_zs2hl] T (4.74)

f\rin9 = ['\:rO,/\z:rl,Z\Orl,Azrl,AOrl,Azrl,""AxrN'AOrN'AzrN'A°rN'AzrN] T (4.75)

4.5.1.2 CLASSICAL MODEL

The discrete displacement vector for the shell is the (6MN + 2M + 2N + 2) × 1

vector

.[tshell [ [ITO , _LT ^ T T= .... uM] (4.76)

in which subvectors are

i'_7 H

_0 = [q0, Wl00, Yl01, Wl01, "", VlON, Wl0N] T (4.77)

: ['ttlmO, Wlm0, ttlml, _l'2ml, Vlml _ V2ml, Wlml, W2ml, ..., ttlmN, tl2mN,

(4.78)
T

_lnzN, V2m/V_ WlmN, W2mN]
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where m = 1 ..... M

The (4M + 1) x 1 discrete displacement vector for the stringer and (4N + 1) x 1 vector

for the ring are

t_Mr = [ql, "tts11,/ds21, Wsll-Ws21,'", UslM, Us2M, WslM, Ws2M] T (4.79)

_ring = [tVr0,7-l.rl,Vrl,tl'rl,f_0rl,...,//r.N,VrN,WrN,O0rN]T (-1.8())

The 4M x 1 discrete interacting loads vector for the shell-stringer interface and (SN + 1 ) x 1

vector for tlle shell-ring interface are the same as for the shear deformation model and are

given by Eqs. (4.74) and (4.75).

The stiffness submatrices Ii11, IG,.2 and A33 in Eq. (4.68) are symmetric. From

Appendices A and B, it may be noted that the elements of the shell stiffness matrix Ixll

are sparsely populated because of the orthogonality of the Fourier Series. The structure

of All is block diagonM; i.e., nonzero elements occur for index p of the test function equal

to index m of the trial function, and index q of the test function equal to index n of the

trial function. See Fig. 4.2. Furthermore, there is a decoupling of the elements obtained

fi'om the displacement and rotation approximations usin_ single and double Fourier series.

This special nature of the shell stiffness matrix Ix'11 makes it possible to invert the matrix

in blocks (i.e., as blocks of 2 x 2 or 6 x 6 submatrices, etc.) instead of invertin_ the

matrix as a whole (i.e., as (6MN + 2M + 2N + 2) x (6MN + 2M + 2N + 2) matrix). This

results in considerable saving of the CPU time. As an example consider the linear analysis

with Fourier Series approximations truncated at 8 harmonics ill X- and O-directions, i.e..

M = N = 8. This results in 418 × 418 A'11 matrix for the classical structural model. II

takes 20 seconds of CPU time on IBM 3090 machine when the shell stiffness matrix I_11

is inverted in blocks compared to 71 seconds of ([PU time on the s_me computer when

the matrix is inverted as a whole.
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Equation (4.68) is first solved for the displacements in terms of interacting loads.

then this solution is substituted into the constraint equations to determine the interacting

loads. Thus, the total solution is obtained. An LU decomposition procedure is used to

invert the blocks in the stiffness submatrices, Kll, K2_. and K33.

4.5.2 NONLINEAR ANALYSIS

As stated earlier, the nonlinear analysis is performed for the repeating unit with

symmetrical section stiffeners only. On the basis of symmetry of the repeating unit about

x- and 0-axes, the displacements and interacting loads approximations are modified for the

nonlinear analysis. In Eqs. (4.1) through (4.3) for shell displacements, in Eqs. (4.11) and

(4.12) for stringer displacements, in Eqs. (4.17) and (4.20) to (4.22) for ring displacements.

in Eqs. (4.29) and (4.30) for the shell-stringer interacting loads, and in Eqs. (4.33), (4.36)

and (4.37) for the shell-ring interacting loads, the coefficients u2m,_, v2,,_,_, w_m,,, us2,,_,

u,sl,,_, u_, 0_:,-,_, Oo_,_, 0:_,_, ,\_._2,n, Azsl,,,, A_,r,_. Ao_,_, and A:,.,_, all are set to zero where

m = 1,2 ..... M and n = 1,2 ..... N. Note that the corresponding coefficients in the virtual

displacements and interacting load approximations (Eqs. (4.6-4.8), (4.14), (4.15), (_1.23).

(4.26-4.28), (4.31), (4.32). (4.38), (4.41), and (4.42)) for the shell and stiffeners are also

set to zero. These modified approximations for the displacements are substituted into the

actual and the incremental virtual work functionals derived for each structural element

in Section 3.5. The incremental displacements have the same functional forms as the

actual displacements, with the amplitudes denoted by the prefix A. The integration over

space is performed after substitution for the Lagrange multipliers, or interacting loads,

and after substitution for each virtual displacement. This process results in a 3MN +

6M + 6N + 6 system of equations governing the increment in displacements (indicated

by a :.X preceding the displacement subvector symbol) and the Lagrange multipliers. The
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governingequationsareof theform

/k'_lshel l

ASst_

[c] L,_
AT

O

where the system matrix [C] is given by

[c] =

" Rshelt(Ushet_; P)

-R_(_)
0

0

0

_l(ll(_shelt ) -- pL(iL_hcU) 0 0 Bll B12 B13-

0 /(22 ( ,gist,. ) 0 B21 0 B23

0 0 I(33(ti_) 0 B32 0

B_ B_ 0 0 0 0
B_._ o B_ o 0 o
_l_ B_3 o o o o

(4.81)

(4.82)

Submatrices Kll, K22 and t(3a are the tangent stiffness matrices for the shell, stringer,

and ring, respectively, that are functions of the displacements. These matrices are ob-

tained from their respective incremental internal virtual work statements. The matrix L

results from the incremental external virtual work functional for the hydrostatic pressure.

Eq. (3.53), and is a function of displacements as well. The submatrices B,j,i,j = 1,2,3,

in Eq. (-1.82) are determined from the external virtual work terms involving the Lagrange

multipliers, and the constraint Eqs. (2.73), (2.74), (2.77) and (2.81). These t3ij submatri-

ces are not functions of the displacements. The vector on the right-hand-side of Eq. (4.81)

is the residual force vector. The subvectors of Rshel_, Rstr, and R,, of the residual force

vector are obtained from the internal and external virtual work (due to internal pressure.

Eq. (3.30)) statements of the respective structural element. The constraint equations

correspond to the last three rows of the partitioned matrix in Eq. (-1.82). The elements of

submatrices !(ij and L are given in Appendix C, and the elements of subvectors R_h,u,

R_t_ and R_ are given in Appendix D. The elements of submatrices Bij are obtained from

those given in Appendix B for the classical model by neglecting the elements corresponding

to the coefficients set to zero based on the symmetry of the stiffeners.
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The discrete displacement vector for the shell in Eq. (4.81) is the (3MN + 2M +

2N + 2) × 1 vector

: ..... (4.83)

in which the subvectors are

_o = [qo.woo. ,o_. wol,..., vox, wo_T]r
(4.84)

ilm ---- [Um0, Wmo , 'ttrnl, Umi,/b'rtti , -.., _,,N. UmN, WmN] T

where m = 1 .... ,M. In Eq. (4.81) the (2M + 1) × I discrete displacement vector for the

stringer and (2N + 1) × 1 vector for the ring are

Ustr = [ql, Usl, Wsl ..... UsM,WsM] T

(4.85)
_ =[w_o,v_, _., ..., v_u, w_x] _

The discrete vectors of the Lagrange multipliers are

_,_ = [A_I, A_I ..... A_M, _M] r
(4.86)

_r ---- ["\zrO,,'\Orl,.'_zrl,-..,,'_OrX,/_zrNJT

The iterative method of solution is based on Eq. (4.81}. At a fixed value of the

pressure p, a sequence of displacements is defined by adding an increment to the previous

member of the sequence to determine the next member in the sequence. For a good

initial displacement estimate, the sequence converges to the displacement solution of the

nonlinear problem. The initial estimate used here is the converged solution at the last

pressure load step. The update procedure to determine the increment is based on the

modified Newton method. In the modified Newton method the matrices Kll, K22 and

K33, and L in Eq. (4.82) are only computed for the initial displacement in the sequence,

and are not updated for each new member in the sequence. As shown in Eqs. (4.81) and

(4.82) the constraints are applied to the increments in the displacements. If the initial

estimate of the displacement satisfies these constraint equations and the increments satisfy
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thesesameequations,then the final displacementin the sequencewill satish' thesesame

equations.

The convergenceof the solutionat a fixed load step impliesthat the equilibrium

of the repeatingunit is attainedat that load step. Thus,at the convergedsolution the

residualdefinedby 6)'V'ezt- 6}'Yi,_t = i_flWR, and the change in displacements Aft should be

sufficiently small. A reasonable criterion for convergence test can be to minimize &6TR,

where the virtual displacements are replaced by the (admissible) incremental displacement

vector. An error function defined as AfiTR is used to check the convergence against a

preset tolerance, i.e., AfiTR <_ TOL at the converged solution. In the present analysis.

this error function is formulated as

,,'Kf_T R [ *T
Bll_str B12Ar

]
= ABS[_%h_,,[R,h_,,- - - B,3Q]j

+.4Bs'  2 O]l (4.s7)

The stiffness submatrices (&'ll --pL). h'o.o, and Ka3 in Eq. (4.82) are symmetric.

From Appendix C, it may be noted that the elements of the stiffness matrix for the shell,

A'11, are densely populated inspite of orthogonality of the series. Furthermore, in the

nonlinear analysis there is a coupling of the elements obtained from the displacement

approxilnations using single and double Fourier Series. Thus. the shell stiffness matrix

(A11 - pL) cannot be inverted in the blocks as is done in the case of linear analysis.

Instead, the matrix is now required to be inverted as a whole (i.e., mq (3MN + 2/11 +

2A + 2) x (3MN + 2M + 2N + 2) matrix), and hence, is computationally more expensive.

Equation (4.81) is first solved for the displacements in terms of interacting loads, then this

solution is substituted into the constraint equations to determine the interacting loads.

Thus. the total solution is obtained.

the stiffness submatrices.

An LU decomposition procedure is used to invert
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4.5.3 VERIFICATION OF NUMERICAL SOLUTION

Separate FORTRAN computer programs are written for the linear and nonlinear

analyses. In each program several checks on the numerical results are coded to establish

necessary conditions for the solution accuracy. These are

1. The solution for the Fourier coefficients for the displacements and interacting

loads are substituted into the left-hand side of the Eq. (4.68) to compute the force vector.

This computed force vector is compared to the input force vector to check the accuracy

of the numerical solution to Eq. (4.68).

2. From free body diagrams of the shell, stringer, and ring, overall equilibrium

conditions are established for each. These overall equilibrium conditions are evaluated

using the numerical solution to check if they are satisfied.

3. Pointwise equilibrium equations, or the Euler equations for the functionals, are

not necessarily satisfied by the Ritz method. However, for the stringer and ring in the

present analysis, the Ritz solution is an exact solution of the Euler equations as well.

Consequently, the Euler equations for the stiffeners are programmed and evaluated at

many points using the numerical solution to assess accuracy.

4. For the nonlinear analysis the accuracy of the numerical results at each load step

is ensured by checking the error function defined bv Eq. (4.,_7) against a preset tolerance.

At the converged solution the left-hand and right-hand sides of Eq. (4.81) are individually

equal to zero, and this is verified by the error function given by Eq. (4.87). Furthermore,

for the converged solution at final load step, the final displacements in the sequence are

substituted into the displacelnent constraint equations at the shell-stiffener interface to

verify them.

All numerical results presented in the following chapters satisfy these checks on

numerical accuracy.
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CHAPTER 5

A UNIT CELL MODEL WITH SYMMETRIC STIFFENERS

5.1 INTRODUCTION

Numerical results are obtained for a linear elastic and a geometrically nonlinear

elastic response of the unit cell model subjected to internal pressure. The stiffeners are

assumed to have symmetrical cross sections. The purpose of the linear elastic analysis is

two fold: First, the results obtained are used to validate the structural model employed in

tile analysis by comparing to the results presented by Wang and Hsu 19. Second, these re-

sults for the linear elastic response are subsequently used to compare with a geometrically

nonlinear elastic response. Data used in the example are representative of the dimensions

and cabin pressure of a large transport fuselage structure.

5.2 NUMERICAL DATA

Numerical data for the example are R = 117.5 in., 2I = 20 in., 2RO = 5.8 in.,

t = 0.075 in., R0 = 113.72 in., es = 1.10 in., e_ = 3.78 in., (EA),. = 0.592 × l0 r lb.,

(EI)_ = 0.269 x 10s lb-in_'., (EA)s = 0.404 x 107 lb., (EI)s = 0.142 x 10 s lb-in_., and

with the shell wall stiffness matrices given by

0.!64 0.221 0 }
A = 0. 21 0.577 0 x 1061b/in. B = 0

0 0.221

D
262 159 4.33]

= 159 210 4.33 lb in.

4.33 4.33 159

This data was originally used in an example by Wang and Hsu 19. In their analysis,

Wang and Hsu neglected the contribution of bend-twist coupling terms D16 and D26 in
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the bendingstiffnessmatrix of shell. This impliesthat the shellwall is assumedto be

speciallyorthotropic. Thepresentanalysisis alsobasedon the sameassumption.All the

resultspresentedfor this examplearefor an internalpressurep = 10 psi. The Fourier

Series are truncated at M = AT = 16 (unless otherwise indicated), and this results in 966

degrees of freedom (or equations to be solved) in the structural model. Since 20 = 2.83 c'.

the shell in this example is shallow and the DMV shell theory should be adequate. I1 is

found that the numerical results using Sanders theory with the rotation about the normal

neglected and the numerical results using DMV theory were essentially the same.

5.3 VALIDATION OF STRUCTURAL MODEL

The results obtained from the linear elastic analysis are compared with those ob-

tained by Wang and Hsu is to validate the structural model. They presented the results for

the normal displacement and strains of shell, which are limited to linear analysis. Wang

and Hsu included the interacting loads in their analysis but did not present results for

them. The distributions of the shell's normal displacement w in the circumferential and

axial directions are shown in Figs. 5.1 and 5.2, respectively, for the linear analysis. The

w-distributions shown for the linear analysis compare very well with those presented by

Wang and Hsu (see Fig. 5 in R ef. [19]). The distributions of the circumferential and axial

normal strains on the inner and outer surfaces of the shell from the linear analysis are

shown in Figs. 5.3 and 5.4, respectively. The values of the e_-_ and zoo strains compare

very well to those presented by Wang and Hsu (see Figs. 6 and 7 in Ref. [19]), except in

one respect. The exception is that the circumferential distribution of the axial strain ¢xx

at x = -/ (Fig. 5.4) does not exhibit a decrease in value as the stringer is approached.

Wang and Hsu's results, however, show e_ (Fig. 6 in Ref. [19]) decreasing to nearly

zero as the stringer is approached along the circumference. Several changes to the shell

displacement approximations were attempted, but any of these attempts could not give
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Fig. 5.1 Circumferential distribution of the shell's normal

displacement from the linear analysis at 10 psi.
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a solution showing a decrease in the axial normal strain at the stringer. As a last resort

Wang and Hsu's solution was programmed. However, as shown in Figs. 5.1 to 5.4, the

solution thus obtained only reconfirmed the results obtained from the current analysis.

and did not show a decrease in the axial normal strain at the stringer.

5.4 LINEAR RESPONSE VERSUS NONLINEAR RESPONSE

5.4.1 PILLOWING

Circumferential distributions of the normal displacement w for the shell are shown

in Fig. 5.1 for the linear analysis and in Fig. 5.5 for the nonlinear analysis. Axial

distributions of the normal displacement for the shell are shown in Fig. 5.2 for the linear

analysis and in Fig. 5.6 for the nonlinear analysis. For reference, the normal displacement

for the unstiffened shell, or membrane reponse, is w = 0.2287 inches for the linear analysis.

and w --- 0.2290 inches for the nonlinear analysis. The presence of the stiffeners reduces

the normal displacements from these membrane values as is shown in these figures. The

pillowing effect is much more pronounced for the linear analysis (Figs. 5.1 and 5.2) than

for the nonlinear analysis (Figs. 5.5 and 5.6). The largest normal displacement occurs

midway between the stiffeners, and this value for the linear analysis is 0.1796 inches

while it is 0.1541 inches when geometric nonlinearity is included. The minimum normal

displacement occurs at the stiffener intersection, and its value is 0.1392 inches in the

linear analysis and 0.1490 inches in the nonlinear analysis. Normal displacements along

the stiffeners vary only slightly from their values at the intersection for both analyses.

Thus, including geometric nonlinearity in the analysis increases the minimum value of the

normal displacement of the shell and decreases its maximum value, which is an indication

that pillowing is reduced in the nonlinear response.
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The circumferential and axial normal strain distributions on the inner and outer

surfaces of the shell also show the reduced pillowing effect in the nonlinear analysis. See

Figs. 5.7 and 5.8. The circumferential bending strain (difference in ee8 between the inner

and outer surfaces) is maMmum at the stringer midway between the rings (Figs. 5.3

and 5.7), and axial bending strain is maMmum at the ring midway between the stringers

(Figs. 5.4 and 5.8). These maximum bending strains are substantially reduced in the

geometrically nonlinear response.

5.4.2 BENDING BOUNDARY LAYER

Compare the circumferential normal strain distributions midway between the ring

stiffeners (x = +l) from the linear analysis (Fig. 5.3) to the nonlinear analysis (Fig. 5.7).

The bending strain magnitudes, which are differences between the outer and inner normal

strain values, are less in the nonlinear response than in the linear response. In the linear

analysis the shell exhibits bending over its entire circumference. In nonlinear analysis the

shell behaves like a membrane in the central portion with bending confined to a narrow

zone, or boundary layer, adjacent to the stringer. Since the bending is confined to a narrow

zone near the stringer, the strain gradients are larger in the nonlinear response than in the

linear response. These observations are confirmed by plotting the circumferential bending

moment M_ and the circumferential transverse shear resultant Q_ versus 0/(9 at x = -I

as is done in Figs. 5.9 and 5.10, respectively. The bending moment magnitude is less in the

nonlinear analysis compared to the lineal" analysis. Moreover, for the nonlinear analysis

the bending moment is significantly different from zero only in the boundary layer. This

is similar to the distributions of the circumferential strains. By the shell equilibrium,

the transverse shear resultant Q8 is proportional to the derivative (gradient) of bending

moment, OM_/O0. Because the bending moment gradients, or the strain gradients, in

the nonlinear analysis are larger than in the linear analysis, the transverse shear resultant
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has a larger magnitude in the nonlinear analysis than in the linear analysis as is shown

in Fig. 5.10. A larger transverse shear resultant in the nonlinear analysis means that the

interlaminar shear stresses are larger in the nonlinear analysis than in the linear analysis.

Thus, while pillowing is reduced in the nonlinear response, the confinement of bending

to a boundary layer near the stringer results in larger interlaminar shear stresses near

the stringer in the nonlinear response than in the linear response. These features of the

nonlinear response are consistent with the results found by Boitnott 2°.

5.4.3 INTERACTING LOAD DISTRIBUTIONS

The distributions of the interacting line loads between the ring and the shell are

shown in Figs. 5.11 and 5.12. The distributions of the circumferential component, A_, are

antisymmetric about the origin, and A_ has reduced magnitudes due to the geometrically

nonlinear effect. As shown in Fig. 5.12, the distributions of the normal component of the

interacting load, A_, are symmetric about the origin, attain extremum at the origin, and

exhibit severe gradients at the origin. The negative value of AzT at the origin indicates

that the action of the ring is to pull the shell radially inward against the action of the

pressure to expand the shell outward. The peak normal load intensity is changed from

-1,674 lb/in, in the linear analysis to -1,045 lb/in, in the nonlinear analysis.

The distributions of the interacting line loads between the stringer and the shell are

shown in Figs. 5.13 and 5.14. The distributions of the tangential component, Axs, are

antisymmetric about the origin and Axs has reduced magnitudes due to the geometrically

nonlinear effect as shown in Fig. 5.13. The distributions of the normal component, A,,s,

are symmetric about the origin as shown in Fig. 5.14. The normal component A,_ is

ma_ximum at the origin and has a steep gradient there. The ma_mum value of normal

component is reduced from 484.7 lb/in, in the linear analysis to 320.3 lb/in, in the
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magnitudeof the interactingnormalloadintensity at the stiffenerintersectionas M and

N increase. The total normal load intensity acting on the shell at the stiffener intersection

is denoted by Az, where Az = A:_(0) + Azs(0). This value is -1,190 lb/in, from the linear

analysis and is changed to -725 lb/in, in the nonlinear analysis for M = N = 16. A

normalized value of A_ is plotted versus increasing M and N values, with M = N, in Fig.

5.17 for the linear analysis, and in Fig. 5.18 for the nonlinear analysis. The normalization

factor, Azmax, is simply the value of A_ for the largest values of M and N considered in

each analysis. As shown in figures, A_ is steadily increasing with an increasing number of

terms in the truncated Fourier Series. Consequently, the series for A= does not exhibit,

in the range of M and N considered, a convergent behavior. In spite of the fact that the

normal load intensity at the stiffener intersection is exhibiting singular behavior, the total

radial resultant load at the stiffener intersection converges rapidly with increasing values

of M and N as shown in Figs. 5.17 and 5.18. The total radial resultant plotted in these

figures is defined by

®

/ [A, Coco - si,,o] (Ro + dO, (5.1)F=

-®

since the resultant from the stringer vanishes by Eq. (4.61). (A more general approach to

the resultants at the stiffener intersection is discussed in subsection 6.3.2.) From the linear

analysis F_ = -357.5 lbs, and from the nonlinear analysis Fz = -382.8 lbs. Since the

applied radial load due to internal pressure acting on the repeating unit is 1,160 lbs (= 10

psi× 20 in. x5.8 in. ), the ring resists about 30.8% of this applied load in the linear response,

and this percentage is increased to 33% in the nonlinear response. The remaining portion

of the applied radial pressure load is carried by the shell.
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magnitudeof the interactingnormalloadintensityat the stiffenerintersectionasM and

N increase. The total normal load intensity acting on the shell at the stiffener intersection

is denoted by A.., where _z = A.-_(0) + A_-s(0). This value is -1,190 lb/in, from the linear

analysis and is changed to -725 lb/in, in the nonlinear analysis for M = N = 16. A

normalized value of Az is plotted versus increasing M and N values, with M = N, in Fig.

5.17 for the linear analysis, and in Fig. 5.18 for the nonlinear analysis. The normalization

factor, A.-max, is simply the value of _ for the largest values of M and N considered in

each analysis. As shown in figures, As is steadily increasing with an increasing number of

terms in the truncated Fourier Series. Consequently, the series for )% does not exhibit,

in the range of M and N considered, a convergent behavior. In spite of the fact that the

normal load intensity at the stiffener intersection is exhibiting singular behavior, the total

radial resultant load at the stiffener intersection converges rapidly with increasing values

of M and N as shown in Figs. 5.17 and 5.18. The total radial resultant plotted in these

figures is defined by

®

/ [A,._ CosO- Ao_ SinO] (no + er) dO, (5.1)

-O

since the resultant from the stringer vanishes by Eq. (4.61). (A more general approach to

the resultants at the stiffener intersection is discussed in subsection 6.3.2.) From the linear

analysis F_ = -357.5 lbs, and from the nonlinear analysis F_ = -382.8 lbs. Since the

applied radial load due to internal pressure acting on the repeating unit is 1,160 lbs (= 10

psi×20 in.×5.8 in.), the ring resists about 30.8% of this applied load in the linear response,

and this percentage is increased to 33% in the nonlinear response. The remaining portion

of the applied radial pressure load is carried by the shell.

112



1.0

0.8

0.6

0.4

0.2

0.0

X.

z max. = - 724.8 II_n.

I I I j I I I

4 8 12 16

M,N

Fig. 5.18 Normal load intensity _ and total normal load F Zat the stiffener inter-

section for increasing number of harmonics in the nonlinear analysis at 10 psi.

i14



0 Z

I

1.0

0.8

0.6

0.4

0.2

0.0
0

X.

z max. = - 724.8 Ib/in.

, I , I , I i I

4 8 12 16

M,N

Fig. 5.18 Normal load intensity X_and total normal load F z at the stiffener inter-

section for increasing number of harmonics in the nonlinear analysis at 10 psi.

114



of geometric nonlinearity into the analysis. The a_al force carried by the stringer due

to the closed-end pressure vessel effect is increased in the nonlinear analysis with respect

to its value in the linear analysis. Also, the circumferential force carried by the ring is

increased in the nonlinear analysis with respect to its value in the linear analysis. Thus,

the stiffeners resist an increased portion of the internal pressure load. acconlpanied bv a

commensurate decrease in the load carried by the shell, when geometric nonlinearity is

included into the analysis.
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D ____

"474.937 256.071 45.074 0 3
256.071 615.194 54.003 -0.47 x 10 -s /
45.074 54.003 276.965 -0.75 x 10 -5 |

0 -0.47 × 10-5 -0.75 × 10 -5 0.75 × 10 -s J

The elements of the transverse shear stiffness matrix in Eq. (2.34) are

lb in.

A44 = Ass = 0.69264 x 10s lb/in., A45 = 0

The bending and stretching-bending coupling submatrices for classical model are given by

"474.937 256.071 0 ]

D = 256.071 615.194 0 J Ib in. B = 00 0 276.965

The extensional stiffness submatrix A is essentially the same for classical theory and the

transverse shear deformation theory.

Cross sections of the stiffeners and their dimensions are shown in Fig. 6.1. The

stringer is an inverted hat section laminated from twelve plies of AS4/938 graphite-epoxy

tow prepreg with a [+45, 02,90, +15, 90, 02, +45]T lay up and total thickness of 0.0888 in.

Tile stiffnesses in Hooke's law for the stringer in Eq. (2.52) are

(EA)_ = 0.6675 × lOrlb, (ElL = 0.2141 x 1071b in. 2, (GA)_ = 0.843 x 1061b

The frame, or ring, is a 2-D braided graphite-epoxy J-section consisting of 0 ° and 90 °

tows. The wall thickness is 0.141 inches, and the elastic modulii are assumed to be

E1 = 7.76 x 106lb/in. _', E2 = 8.02 x 106lb/in. 2, G12 = G13 = G.,3 = 1.99 x 1061b/in. _', and

ux2 = 0.187. Using the ring material properties and the cross-sectional dimensions, the

stiffness matrix for the ring in Eq. (2.58) is computed from the computer code developed

by Woodson "_9. The non-zero stiffnesses are

EA = 0.9088 x lOrlb, EI_, = 3.915 x 1071b in. _', EI_: = 0.1867 x lO_lb in. 2

EL_: = 0.2993 × lOrlb in.", EI,,,_, = -1.322 x 10r/b in. 3,
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EI_ = 1.705 × 1071b {7_. 4,

GAxo = GA..Ü

EI,,,: = -0.1865 × 106/b in. 3

= 0.2396 × 107 lb

All the results presented are for an internal pressure p = 10 psi, and the Fourier Series

are truncated at twenty-four terms in the x- and 0-directions (M = N = 24). Based on

M = N = 24, the transverse shear deformation model consists of u total of 6414 degress

of freedom, and classical model consists of 3966 degress of freedom.

6.3 INFLUENCE OF AN ASYMMETRICAL SECTION RING

6.3.1 INTERACTING LOAD DISTRIBUTIONS

The distributions of the interacting line load intensities between the stiffeners and

the shell are shown in Figs. 6.2 through 6.8. The effects of transverse shear deformations

and of warping deformation of the ring's cross section due to torsion on the magnitudes

of the interacting line loads are summarized in Table 6.1. For the component Ax_ tangent

to the stringer (Fig. 6.2), there are only small differences in the distributions as predicted

by the four structural models. However, the peak value of the component normal to the

stringer, A_,s, is reduced in the transverse shear deformation models with respect to its

peak value in the classical models (Fig. 6.3 and Table 6.1).

The distributions of a_xial force intensity, A_, between the ring and shell predicted

by the classical and shear deformation models with warping are nearly the same (Fig.

6.4). However, the distributions of this force intensity predicted by the classical and shear

deformation models without warping have significant differences. Thus, this interacting

load intensity is more sensitive to the inclusion or exclusion of warping of the ring cross

section into the structural model. As shown in Fig. 6.5, the differences in the results for

circumferential force intensity, A0_. between the ring and shell from the four models are
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small, except in the vicinity of the stiffener intersection where the effects of including the

transverse shear deformation into the models are manifested. However, the differences in

Aer occur over one wave length of the highest frequency i.e., AO/O = 2/24. Differences

occuring over the shortest wavelength may not be significant: more terms in the Fourier

series are required to verify this. The distributions of the normal force intensity. A:r.

between the ring and shell predicted by the four models are essentially tile same (Fig.

6.6). The distributions of the circumferential moment component, A0_. predicted by the

classical models have higher magnitudes as compared to shear deformation models (Fig.

6.7 and Table 6.1). Also note the change in sign of A0_ distributions in the vicinity of

the joint as a result of inclusion of warping into the models. The classical theory predicts

much larger magnitudes of normal moment component, A-,., compared to the transverse

shear deformation theory for the models in which warping is included (Fig. 6.8 and Table

6.1 ). However, the reverse is true for the structural models with no warping. Also. there is

a change in sign in the distributions of A-_ for classical models with and without warping

effects.

The distribution of the normal component of the traction across the width of the

attachment flange of the ring is represented by line force intensity ,\:,. and line moment

intensity A0r. The values of Az_ are nearly the same in the classical and transverse shear

deformation models (Fig. 6.6), but magnitudes of A0r are substantially decreased in the

transverse shear deformation models with respect to the classical models (Fig. 6.7). Thus,

the asymmetry of the normal traction across the flange width of the ring is decreased in

the transverse shear deformation models with respect to the classical models.

The distribution of the circumferential component of the traction across the width of

the attachment flange of the ring is represented by line force intensity A0_ and line moment

intensity A_. The values of A0_ are nearly the same in the classical and transverse shear
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deformation models (Fig. 6.5). However, the magnitude of Az_ is substantially increased

in the transverse shear deformation model with respect to the classical model with warping

excluded, and is substantially decreased in the transverse shear deformation model with

respect to the classical model with warping included (Fig. 6.8). Thus, the asymmetry

of the circumferential traction across the flange width of the ring is increased in the

transverse shear deformation model with respect to the classical model without warping.

and is decreased in the transverse shear deformation model with respect to the classical

model with warping.

The inclusion of transverse shear deformation and warping of ring's cross section

into the analyses influences the distributions and magnitudes of interacting line load com-

ponents A.,s,/\x_, )_, A_. and A.,_. The distributions of interacting line load components

Axs and A:_ remain essentially the same. The cause of sensitivity to transverse shear de-

formations is two-fold: First, the tangential displacements of the shell along the contact

lines are de-co_tpled from the out-of-plane rotations of the reference surface of the shell.

and for the stiffeners the longitudinal displacements along the contact lines are dc-co_lpled

from the rotations of the longitudinal reference axes. Second, in the transverse shear

deformation model, the torsional rotation of the ring at the shell-stringer-ring joint is de-

coupled from the in-plane bending rotation of the stringer at the joint, thereby allowing

for increased joint flexibility. In the classical model, the torsional rotation of the ring at

the joint is constrained to be the same as the bending rotation of the stringer (see Fig.

6.9). The values of these joint rotations for the four structural models are given in Table

6.2. Notice from Table 6.2 that the sense of the rotation changes if warping is included,

and that the transverse shear deformation results in a torsional rotation of the ring that

is about twice as much as the bending rotation of the stringer.
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Table 6.2 Rotations About The Circumferential Axis At The Stiffener Intersection.

Description of the Rotation of

the Structural Component

Rotations in 10 .5 radians

Classical Theory Transverse Shear Theory

No Warping Warping No Warping Warping

Shell normal _x (0, O)

Ring twist ¢er (0)

Stringer normal ¢es (0)

- 2.56 2.58 -1.06 2.65

- 2.56 2.58 -2.67 3.64

- 2.56 2.58 -0.29 1.85

132



Table 6.2 Rotations About The Circumferential Axis At The Stiffener Intersection.

Description of the Rotation of

the Structural Component

Rotations in 10"5 radians

Classical Theory Transverse Shear Theory

No Warping Warping No Warping Warping

Shell normal Cx (0, O)

Ring twist Cot (0)

Stringer normal %s (0)

- 2.56 2.58 -1.06 2.65

- 2.56 2.58 -2.67 3.64

- 2.56 2.58 -0.29 1.85

132



X

0

Fo

Cx C O

Fig. 6.10.Components of the resultant of the interacting line load

intensities acting on the inside wall of the shell at the origin.

134



X

F0

c_ Co

Fig. 6.10.Components of the resultant of the interacting line load
intensities acting on the inside wall of the shell at the origin.

134



Table 6.3 Resultants At Stiffener Intersection.

Classical Theory Transverse Shear Theory
Components of the

Resultant
No Warping Warping No Warping Warping

Co from stringer, - 1.1696 - 0.0921 - 0.2953 - 0.7797
lb-in.

C o from ring, lb-in. 1.627 5.645 1.363 6.0192

Co total, lb-in. 0.457 5.5526 1.0676 5.2396

F z, lb. - 564.06 - 564.56 - 562.27 - 563.15
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asymmetricabout the origin. Only smalldifferencesarepredictedby tile four structural

modelsin the distribution of 1,_.

The distributionsof the circumferentialforceandin-planebendingmomentill the

ring areshownin Fig. 6.13. Thedifferencesin thesedistributionspredictedbv the four

modelsare very small. The distributions of the in-planeshearforce, 1_7.,in the ring

predictedby the four structuralmodelshavenegligibledifferences,asshownill Fig. 6.14.

The out-of-planebendingmomentM:r and torque Tr in the ring are more sensitive to

the change in models as shown Fig. 6.15. The distributions of the out-of-plane bending

moment are symmetric about the origin, and their magnitudes predicted bv the models

with warping included are substantially larger as compared to their magnitudes predicted

by the models without warping. The distributions of total torque, TT. (= Ts_, - l_'I,._/Ro),

are antisymmetric about the origin. As shown in Fig. 6.15. the torque has reduced

magnitudes in the transverse shear deformation model compared to the classical model

when warping is included. The torque predicted by the models without warping is St.

Venant's torque T_, and this is negligible as shown in Fig. 6.15. The distributions of out-

of-plane shear force, I,_,., in the ring are shown in Fig. 6.16, and these distributions are

antisymmetric about the origin. The magnitudes of l_ predicted by the transverse shear

deformation model are larger compared to the classical model when warping is included.

However the reverse is true for the 1_,_ distributions without warping. The distributions

for M_s, M:,., T_ and 1.'_,_shown in Figs. 6.11, 6.15 and 6.16, respectively, indicate that

these stiffener actions are sensitive to both transverse shear deformations and warping

deformations.

6.3.5 SHELL RESPONSE

The distribution of the normal displacement along x-curve midway between the

stringers (0 = -®), and along the O-curve midway between the rings (_' = -l), are
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asymmetricabout the origin. Only smalldifferencesarepredictedby the four structural

modelsin the distributionof t z_.

The distributions of the circumferential force and in-plane bending moment in the

ring are shown in Fig. 6.13. The differences in these distributions predicted by the four

models are very small. The distributions of the in-plane shear force, l_r, in the ring

predicted by the four structural models have negligible differences, as shown in Fig. 6.14.

The out-of-plane bending moment Mzr and torque T_ in the ring are more sensitive to

the change in models as shown Fig. 6.15. The distributions of the out-of-plane bending

moment are symmetric about the origin, and their magnitudes predicted by the models

with warping included are substantially larger as compared to their magnitudes predicted

by the models without warping. The distributions of total torque, T_ (= T,,. - lll_or/Ro),

are antisymmetric about the origin. As shown in Fig. 6.15, the torque has reduced

magnitudes in the transverse shear deformation model compared to the classical model

when warping is included. The torque predicted by the models without warping is St.

Venant's torque Tsr, and this is negligible as shown in Fig. 6.15. The distributions of out-

of-plane shear force, I._,., in the ring are shown in Fig. 6.16, and these distributions are

antisymmetric about the origin. The magnitudes of Vx_ predicted by the transverse shear

deformation model are larger compared to the classical model when warping is included.

However the reverse is true for the l'_r distributions without warping. The distributions

for Mo,, Mz,., T,. and 1.'_ shown in Figs. 6.11, 6.15 and 6.16, respectively, indicate that

these stiffener actions are sensitive to both transverse shear deformations and warping

deformations.

6.3.5 SHELL RESPONSE

The distribution of the normal displacement along x-curve midway between the

stringers (0 = -O), and along the 0-curve midway between the rings (x = -l), are
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shown in Fig. 6.17. As depicted in this figure, there is a negligible difference between

the results from the transverse shear deformation model and classical model (warping of

the ring is included in both models). Also, there is negligible difference in the axial and

circumferential normal strain distributions between the two models as shown in Figs. 6.18

and 6.19. Thus, the normal displacement and in-plane normal strains for the shell are not

significantly influenced by the inclusion of either transverse shear deformations or warping

deformation of the ring into the structural raodels, in part because the shell is very thin

for the example studied (R/t = 1268).

6.4 A RING WITH SYMMETRICAL CROSS SECTION

As a. benchmark for comparing the transverse shear deformation model with the

classical model, analyses were performed for a ring with symmetric cross section. In this

case the changes made to the numerical example under discussion are to set the bending-

coupling stiffeness EI,_x, the out-of-plane bending-to-warping coupling stiffness El_x, and

the contour warping function parameter w0 of the ring, all to zero. Consequently, the

0-axis, as well as the x-axis, are axes of symmetry for the repeating unit in terms of

geometry, load, and material properties. Symmetry about the 0-axis implies there is no

out-of-plane bending and torsion of the ring; i.e., u_(O) = ¢0_(0) = ¢:,.(0) = A_(0) =

Ao,.(0) = A_(O) = 0 for -O _< 0 _< O. Thus, for the symmetrical section stiffeners only

the interacting line load components tangent and normal to the stiffeners are non-zero.

Since there is no torsion, warping of the ring cross section does not play any role in the

analyses.

The distributions of the tangential interacting load intensity between the shell and

ring are shown in Fig. 6.20. The differences in the results from the two models are small

except in the vicinity of the stiffener intersection. The peak magnitude of A0_ in the

transverse shear deformation model is smaller than the peak value for A0_ in the classical
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model (50.8 lb/in versus 64.5 lb/in.). However, this difference occurs over one wave

length of the highest harmonic retained ill the analysis, and may not be significant. The

distributions of the tangential and normal interacting load intensities between the shell

and stringer, and the normal load intensity between the shell and ring are not significantly

different in the two models.

For a symmetrical cross section ring, in Eqs. (6.1) through (6.6) F_ = i:o = Cx =

C_ = C: = 0. The only non-zero component of the force resultant is the radiM force Fz.

The values of F: computed from the classical and transverse shear deformation models

are -563.72 lb. and -561.89 lb., respectively.

6.5 SUMMARY OF RESULTS

The asymmetrical section ring complicated the analysis of the unit cell, since sym-

metry about the plane of the ring is lost. Out-of-plane bending and torsion of the ring

occur as well as a rotation of the shell-stringer-ring joint about the circumferential axis.

Inclusion of transverse shear deformations, and warping deformation of the ring's cross

section due to torsion, into the mathematical model significantly influenced several aspects

of the response.

The sense of the rotations of the structural elements at the joint is changed with the

inclusion of warping deformation in the ring, and the twist rotation of the ring at the joint

increases by 40% with the inclusion of transverse shear deformation, as is shown in Table

6.2. That is, joint flexibility increases since element rotations at the joint are de-coupled

by using transverse shear deformation models.

The interacting loads that are strongly affected by the structural modeling are those

components associated with the asymmetric response. These are the a,,dal force intensity

Axe, the normal moment intensity A,,_, and the tangential moment intensity A0_, between
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the ring and shell. At the joint the magnitudeof ,_xr is increased by the inclusion of

warping and reduced by the inclusion of transverse shear (Fig. 6.4). The normal moment

intensity A_.7. is a measure of the asymmetry in the distribution of the circumferential

traction across the width of the ring's attachment flange. The sense of A._ is changed

when both transverse shear and warping are included, and its magnitudes are reduced

by the transverse shear effect (Fig. 6.8). However, the magnitude of the resultant of

the circumferential traction across the flange width of the ring, as measured by the line

load intensity ,_0r, is only moderately affected by the changes in the structural models

(Fig. 6.5). The tangential moment intensity A0_ is a measure of the asymmetry in the

distribution of the normal traction across the width of the ring's attachment flange. At the

joint, the sense of A0T is changed by the inclusion of warping deformation and additionally

its magnitude is reduced by the inclusion of transverse shear deformation (Fig. 6.7).

However, the magnitude of the resultant of the normal traction across the flange width,

as measured by the line load intensity ,kzr, is essentially unaffected by changes in the

structural models (Fig. 6.6).

The distributions of the normal actions between the shell and stiffeners (,_zs,)_-_, and

A0r) all show significant magnitudes only in the vicinity of the joint, with much smaller

magnitudes away from the joint. In fact, they all appear to exhibit singular behavior at the

joint, but only finite magnitudes are represented by the truncated series approximations.

The distributions of the actions tangent to the stiffeners (,_xs, ,_0_, and A_.r), on the other

hand, have small magnitudes in the vicinity of the joint and larger magnitudes away from

the joint. These tangential actions do not exhibit singular behavior. (These results are

similar to those found for the symmetric stiffeners problem discussed in Chapter 5.)

In spite of the singular behavior of the line load intensities associated with the normal

actions, the resultant of these distributions resolved at the joint converge relatively quickly
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with the numberof termsretainedin the seriesapproximations.The resultantconsists

of a radial forceF. and a moment Co about the circumeferential axis. Fz represents the

action of the stiffeners to pull the shell radially inward against the pressure load, and

Co is primarily due to asymmetry in the actions between the ring and shell. Force F_ is

essentially unaffected by the structural modeling (Table 6.3). and its magnitude for the

example studied is about 17% of the total pressure load carried by the unit cell. The

remaining pressure load is carried by the shell itself. The moment C_ is very sensitive to

the strt_ctural modeling, in particular to the effect of warping as shown in Table 6.3. This

moment C_ vanishes for a completely symmetric problem.

The out-of-plane bending moment and torque in the ring are very sensitive to the

structural modeling, as might be expected. The magnitudes of the both the out-of-plane

bending moment and torque increase with the inclusion of warping and transverse shear

into the mathematical model (Fig. 6.15). However, the shell's normal displacement and

strains are insensitive to the changes in the structural models for the very thin shell

(R/t = 1268) used in the numerical example.
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CHAPTER 7

CONCLUDING REMARKS

7.1 SUMMARY

Structural analyses are developed to determine the linear elastic and geometrically

nonlinear elastic response of an internally pressurized, orthogonally stiffened cylindrical

shell. The structural configuration is of a long circular cylindrical shell stiffened on the

inside by a regular arrangement of identical stringers and identical rings. Periodicity of

this configuration permits the analysis of a unit cell model consisting of a portion of the

shell wall centered over one stringer-ring joint; i.e., deformation of a structural unit cell

determines the deformation of the entire stiffened shell. See Fig. 1.1. The stringer-ring-

shell joint is modeled in an idealized manner; the stiffeners are mathematically permitted

to pass through one another without contact, but do interact indirectly through their

mutual contact with the shell at the joint. The stiffeners are modeled as discrete beams.

The stringer is assumed to have a symmetrical cross section and the ring either a symmetric

or an asymmetric open section.

The formulations presented for the linear elastic response include the effect of trans-

verse shear deformations and the effect of warping of the ring's cross section due to torsion.

These effects are important when the ring has an asymmetrical cross section, because the

loss of symmetry in the problem results in torsion of the ring, as well as out-of-plane

bending, and a concomitant rotation of the joint at the stiffener intersection about the

circumferential axis. Restraint of cross-sectional warping, as occurs here in the ring due

to contact with the shell, is an important contributor to the normal stresses in thin-walled

open section bars. Based on transverse shear deformations and cross-sectional warping
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of the ring, four structuralmodelsaredefined.Thesimplestmodelusesnon-transverse-

shear-deformabletheory,or classicaltheory,and neglectswarpingdue to torsion. The

mostcomplexmodelincludesboth effects.Modelsof intermediatecomplexityoccur for

inclusionof oneeffectwithout theother. Theformulationspresentedfor thegeometrically

nonlinearresponsetakeinto considerationonly thesymmetricalcross section of stiffeners,

and are based on classical structural theories.

For all the structural models, the response of the unit cell under internal pressure is

obtained by utilizing the Ritz method. Displacements are assumed as truncated Fourier

Series plus simple terms in the axial coordinate to account for the closed-end pressure

vessel effect. Equilibrium is imposed by virtual work. Pointwise displacement continuity

between the shell and stiffeners is achieved by Lagrange multipliers which represent the

interacting line load distributions between the stiffeners and the inside shell wall (see

Fig. 1.2). Data from a composite material crown panel typical of a large transport

fuselage are used for two numerical examples. The first numerical example is used to

validate the structural model, and also to compare the linear response and geometrically

nonlinear response of the unit cell model with symmetrical section stiffeners. In the second

numerical example the linear elastic response of the unit cell model with an asymmetrical

cross section ring is analyzed.

7.2 CONCLUDING REMARKS

7.2.1 EFFECT OF GEOMETRIC NONLINEARITY

It is found that the spatial distribution of the normal displacements of the cylindrical

shell are more uniform, and the bending strains are reduced, in the geometrically nonlinear

elastic analysis with respect to what is predicted by the linear elastic analysis. That is,

pillowing of the skin is reduced by tile inclusion of geometric nonlinearity into the analysis.
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However,in thenonlinearanalysisthemostseverecircumferentialbendingisconfinedto a

narrowboundarylayeradjacentto thestringermidwaybetweentherings,andtheinterior

portion of the shellbehavesasa membrane.In the linearanalysisthebendingoccursover

the entire circumferenceof the shell. The developmentof the bendingboundarylayer

dueto the inclusionof geometricnonlinearityinto the analysiscausesan increasein the

circumferentialtransverseshearresultantin the shelladjacentto the stringercompared

to the linear analysis. Increased interlaminar shear stresses can be expected as a result of

the increased transverse shear resultant.

The axial force carried by the stringer due to the closed-end pressure vessel effect is

increased in the nonlinear analysis with respect to its value in the linear analysis. Also,

the circumferential force carried bv the ring is increased in the nonlinear analysis with

respect to its value in the linear analysis. Thus, the stiffeners resist an increased portion

of the internal pressure load, accompanied by a commensurate decrease in the load carried

by the shell, when geometric nonlinearity is included into the analysis.

7.2.2 INFLUENCE OF AN ASYMMETRICAL SECTION RING

The asymmetrical section ring complicated the analysis of the unit cell, since sym-

metry about the plane of the ring is lost. Inclusion of transverse shear deformations.

and warping deformation of the ring's cross section due to torsion, into the mathematical

model significantly influenced several aspects of the response. The interacting loads that

are strongly affected by the structural modeling are those components associated with

the asymmetric response. These are the axial force intensity A_, the normal moment

intensity A-,, and the tangential moment intensity A0_ between the ring and shell. At the

joint the magnitude of Ax, is increased by the inclusion of warping and reduced by the

inclusion of transverse shear (Fig. 6.4). The normal moment intensity A._ is a measure

of the asymmetry in the distribution of the circumferential traction across the width of
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thering's attachmentflange.Thesenseof A_ is changedwhenboth transverseshearand

warpingareincluded,andits magnitudesarereducedby thetransversesheareffect(Fig.

6.8). However,the magnitudeof the resultantof the circumferentialtraction acrossthe

flangewidth of the ring, as measuredby the line load intensity Ae_, is only moderately

affected by the changes in the structural models (Fig. 6.5). The tangential moment inten-

sity A_r is a measure of the asymmetry in the distribution of the normal traction across

the width of the ring's attachment flange. At the joint, the sense of AeT- is changed by the

inclusion of warping deformation and additionally its magnitude is reduced by the inclu-

sion of transverse shear deformation (Fig. 6.7). However, the magnitude of the resultant

of the normal traction across the flange width, as measured by the line load intensity Az_

is essentially unaffected by changes in the structural models (Fig. 6.6).

The sense of the rotations of the structural elements at the joint is changed with the

inclusion of warping deformation in the ring, and the twist rotation of the ring at the joint

increases by 40% with the inclusion of transverse shear deformation, us is shown in Table

6.2. That is_ joint fle_bility increases since element rotations at the joint are de-coupled

by using transverse shear deformation models.

The out-of-plane bending moment and torque in the ring are very sensitive to the

structural modeling, as might be expected. The magnitudes of the both the out-of-plane

bending moment and torque increase with the inclusion of warping and transverse shear

into the mathematical model (Fig. 6.15). However, the distributions and magnitudes

of the normal displacement and strains of the shell midway between the stiffeners are

unaffected by the change in the structural models.
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7.2.3 SINGULARITY AT THE SHELL-STRINGER-RING JOINT

The distributions of the normal actions between the shell and stiffeners (A_s, A_, and

A0_) all show significant magnitudes only in the vicinity of the joint, with much smaller

magnitudes away from the joint. In fact, they all appear to exhibit singular behavior at the

joint, but only finite magnitudes are represented by the truncated series approximations.

The distributions of the actions tangent to the stiffeners (Axe, A0_, and A:_), on the other

hand, have small magnitudes in the vicinity of the joint and larger magnitudes away

from the joint. These tangential actions do not exhibit singular behavior. In spite of

the singular behavior of the line load intensities associated with the normal actions, the

resultant of these distributions resolved at the joint converge relatively quickly with the

number of terms retained in the series approximations (e.g., see Fig. 5.17). The resultant

consists of a radial force Fz and a moment C0 about the circumferential axis (see Fig.

6.10). Fz represents the action of the stiffeners to pull the shell radially inward against

the pressure load, and C0 is primarily due to asymmetry in the actions between the ring

and shell. The magnitude of force F_ represents the portion of the total pressure load

carried by the stiffeners. The remaining pressure load is carried by the shell itself. Force

F- is essentially unaffected by the structural modeling (Table 6.3). The moment Co is

very sensitive to the structural modeling, in particular to the effect of warping as shown

in Table 6.3. This moment Co vanishes for a completely symmetric problem.

The series for the interacting normal load intensity A,_ at the stiffener intersection

does not appear to converge even in the geometrically nonlinear analysis. However, the

Fourier Series for the total radial resultant toad carried by the stiffeners, which is resolved

at the intersection, exhibits rapid convergence in the geometrically nonlinear analysis (see

Fig. 5.18). The total radial resultant load carried by the stiffeners is slightly increased in

the geometrically nonlinear analysis with respect to its value in the linear analysis.
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7.3 RECOMMENDATIONS FOR FUTURE WORK

The analysis could be extended to include the important load cases of torsion and

bending in addition to internal pressure. Torsion of the stiffened shell is equivalent to

a shear load of the unit cell, and this loading case corresponds to an antisymmetric de-

formation pattern of the unit cell model. Bending is somewhat more complex since the

displacement field has period of 2zr rather than the periodicity of the stringer spacing.

Singular solutions can be investigated to improve the solution methodology. To

begin with, the simplest configuration can be analyzed; i.e., consider the linear response

of a classical structural model with symmetric section stiffeners. This problem can be

reformulated in terms of four integral equatiqns in which the unknowns are the magnitudes

of the interacting load components Azs(X), A-s(x), Ae_(0), and Az_(0). These integral

equations are associated with either the tangential or normal displacement constraints

between the shell and stiffeners. The kernels to these equations are Green's functions

(or il_fluence functions), which are displacement solutions to the shell, stringer, and ring

problems under the actions of concentrated forces. This approach is appealing because

the solution reduces to solving for the interacting load components in integral expressions

along the contact lines rather than solving for the displacements and interacting loads

over the entire solution domain. The difficulty with this approach is in obtaining the

Green's functions, and solving singular integral equations that may result from the contact

problems.
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NOMENCLATURE

Aij

Bij

Dij

Cr

Cs

Cxx, CO0, Czz

exo, COz, _xz

m

M

M_r

Mes

Mxr

Mzx, Moo, Me::, Mx6

M_e

Mzr

n

N

Nor

Nxs

N_, Neo, No_, N_:e

N;o

P

Laminate extensional stiffness

Laminate extension-bending coupling stiffness

Laminate bending stiffness

Eccentricity of ring

Eccentricity of stringer

Three-dimensional engineering normal strains

Three-dimensional engineering shear strains

Harmonic in axial direction

Number of harmonics in axial direction

Ring bimoment

Stringer bending moment

Ring in-plane bending moment

Stress couples of shell theory

Stress couple of Sanders' theory of shells

Modified stress couples of transverse shear

deformation shell theory

Ring out-of-plane bending moment

Harmonic in circumferential direction

Number of harmonics in circumferential direction

Ring circumferential force

Stringer axial force

Stress resultants of shell theory

Stress resultant of Sanders' theory of shells

Internal pressure load
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0

Qo

R

Ro

S

1

2R@

21

7".

/t

IIr

Us

U_, Uu, U:

Vr

V_

_W

w

Wr

Iu s

Ora

£8r

Stringer axial load share

Transformed reduced stiffness of lamina

Transverse shear resultants for shell

Radius to middle surface of shell

Radius to the reference arc of ring

Area. of the shell's reference surface

Thickness of shell

Stringer spacing

Frame, or ring, spacing

Torque in the ring

Axial displacement of middle surface of shell

Axial displacement of reference arc of ring

Axial displacement of centroidal axis of stringer

Rigid body displacements

Circumferential displacement of middle surface of shell

Circumferential displacement of reference arc of ring

Stringer shear force

Ring in-plane shear force

Ring out-of-plane shear force

Virtual work

Normal displacement of middle surface of shell

Normal displacement of reference arc of ring

Normal displacement of centroidal axis of stringer

Axial frequency

Circumferential frequency

Normal strains of ring's reference axis
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O'xO, 6rxz, O'_z

"_x s

7x', 7_z

_xr

I_ zr

l_xx , li_

F_e, _xe

_3

•_z,', ASr, Azr

A_r, Azr

A_=s, A_s

¢8

¢Wr

Vx

Cxr

Cz

Czr

rr

Normal strains of stringer's centroidal axis

Normal strMns of shell's middle surface

Normal stress components

Shear stress components

Ring's transverse shear strains

Stringer's transverse shear strain

In-plane shear strain of shell's middle surface

Transverse shear strains of shell's middle surface

Bending curvature of stringer's centroidal axis

In-plane bending curvature of ring's reference axis

Out-of-plane bending curvature of ring's reference axis

Bending strains of shell's middle surface

Twisting strains of shell's middle surface

Twisting strain of shell's middle surface in Sanders theory

Shell-ring interacting force intensities (F/L)

Shell-ring interacting moment intensities (F-L/L)

Shell-stringer interacting force intensities

Rotation of shell's normal about x-axis

Torsional rotation of ring

Bending rotation of stringer

Rotation of shell's normal about 0-axis

In-plane bending rotation of ring

Shell's rotation around normal

Out-of-plane bending rotation of ring

Twist rate of ring

Rigid body rotations
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APPENDIX A

ELEMENTS OF MATRICES FOR LINEAR ANALYSIS USING

TRANSVERSE SHEAR DEFORMATION MODEL

The non-zeroelementsof the submatricesKij, Bij and Fix in Eq. (4.68) for the trans-

verse shear deformation model are listed below. The parameter _ij is Kronecker delta assuming

the values zero for i _ j, and one for i = j, respectively.

Elements of (10MN + 3M + 3N + 2) × (10MN + 3M + 3N + 2) submatrix [KlX]

AllOR
Kll (1, 1) - I

I(11 (1,2)=2At20R

4A220l
Kll (2, 2) R

Kll (3,3) =2Alla2mlORSm.

h'll (3,4)=2A12c_mlOSmp

K,,(3,5)

IQ, (4,4)

Ku (4, 5)

Kn (5,5)

Iiu (6, 6)

IQ, (6, 7)

if,,(6, 8)

K1, (7, 7)

Kll (7, 8)

=2Bna_lORSmv

=2(@ + A44a_)lOR_mp

=2(-_ - A44)amlORSmp

=2(A44 + Dna_)lOR&_v

A22 _2
=2(--R--_, + _)tO,%

A22 _ )flnlOSnq=2(--_- +

B22 _2 _ Ass )lO$_q=2(-_-_

A22 Ass f42_l®_no
=2(---if- + -_--,,, .

B22 _ Ass)/3nlO6nq=2(--k--
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D22 no
Kl1 (8,8) --2(---_-p n + A55R)lO_nq

A66 l_2 ]
I(11 (9,9)= [AxlO_2rnR -4- ---_'-r_nj[O_mp_nq = /(11 (10, 10)

- B_6)]_m_tO_mp_nq= --Irll (10,11)/ri, (9,12)=- [A,_+ A6_+ (B_

Kn (9,

Kll (9,

14) =-A12amOlSmpSnq = -K1, (10, 13)

1 2
B66 - B66)32- I = /(11 (10, 16)

18) =-(B,2 _- B16 _- B_B)ogm]3nlOOmp_n q : -1(11 (10, 17)

11):{_-y_-n+-_-o+A22_2 A55 [A66+ 2(B61¢-R B626) + (DI_-2D_R 2 +D_6)]a_ _J

RlO5mpanq = K11 (12, 12)

IQ1 (11, 13) _(A22 + Ass) /3nlO&nv_ q = Kll (12, 14)
R

2D_6+ D_g)]_m0_lO_ _I(,, (11,16)=[J_12 .01- B16_ Bg 6 .._ (D61_ -' ,2
R

= -Kll (12, 15)

[ B22 _o . }IQ1 (11,17)=[ --_-._ - A55 + [(B16 + B_6)R + Dt_ - D_]am lOamv6,_q

= Kll (12, 18)

[A22 A_5/_2 A44am] RlOSmp_nq I(11 ( 14, 14)
Kll (13, 13) =t R 2 + -_-T_ + o =

](11 (13, 16) =(B12 - A44R)amlO_mpSnq = -/(11 (14, 15)

B22
h'11 (13, 17) =-(Ass - --_-)3,_lO$mv&_q = IQ1 (14, 18)

22

lC,1(15,15)=[a_4 + D,_ + (Dta - 2Da_+ D_)R" 3.] RlO'5,_va,_q = Kll (16, 16)

Ign (15,18)=-(D_ + D,2 - D_)amt3nlOtSm/5,_q = -h',, (16,17)

D22fq2 11 12 D_)a_n]RlOtSmp(Sn v 1(11(18,18 )
I_',1 (17, 17) = [A55 + --_T"_ + (D66 + 2D66 + =
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Elements of (6M + 1) × (6M + 1) submatrix [K22]

(EA)_
K22 (1, 1) =--:2t

I(22 (2,2)=(EA)sa_16mv

1(22 (3,3)=(Ed),a_16mp

h'2_. (4,4) =(GA)_a_16mv

I(22 (5,5)=(Gd)_a_16mp

I(22 (6,6) =[(GA)s + (EIoo)sa_]16mv

2
1(22 (7,7)=[(GA)s + (EIeo)_am]l$mp

Elements of (6N + 1) × (6N + 1) submatrix [K33]

2EAO

K33 (1,1)- Ro

1(33 (2,2) =GAzo/32n 0__0__
Ro nq

K33 (2, 7) =-GAxo/3nO6nq

O 6
1(33(3,3) =(EAZ_ + aA_O)_o nq

0

I(33 (3,4) =( EA + G Azo )fl,_-_oo6nq

K33 (3, 6) =-GA_oOS,w

K33 (4,4) =(EA + GAze/32) O--O-6nq
-q_0

K33 (4,6) =-GA_o_nO(_nq

2EI_K33 (5, 5)= EI_z+(GJ+ R----_

EI.,x -2, _,_ 06
K33 (5, 6) =(EI_: + _/_n)-- nq

Ro Ro
EI_

E I_ ) + (-_oK33 (5, 7) =-[(GJ + EI_z + Ro

+ R_ _'_'_J Ro nq

EI_ 21 _'_ _6
+ )z"]
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2 O 6
1(33 (6,6) =(GAzon_ + EI::_:_)-_o ,_q

I 2

/ 33 (6,7) =-(EI= +

K33 (7,7) = [(GJ + GAzoRS) + (EI_ + R---_

Elements of (10MN + 3M + 3N + 2) × 4M submatrix [Bll]

(-1) TM

Bll (1, 1) -
O_m

Bll (3, 1) =-l_rnp

Bll (4,4) =--l_mp

t

Bll (5, 1) =-_l_mp

Bll (9,2) =-lS,nv

Bll (10,1) =-l¢Smv

Bll (13, 4) =-l_mp

Bll (14,3)=-l,_,_v

B_I (15,1)=21_mv

BN (16,2)=21_mp

Elements of (1OMN + aM + aN + 2) x (5N + 1) submatrix [B_2]

B12 (2, 1) =-2aO

B12 (4,1) =-2a0

BI_ (6, 3) =-aO_q

B12 (7,4)=--aO_nq

t
B12 (8,3)=_aOSnq
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BI_. (9, 2) =-aOSnq

B12 (11,3) =-aOSnq

B12 (12,6)=-apaO_nq

B12 (13,4)=-aOSnq

BI_ (14,5)=apaOSnq

t

B12 (15,2)-----_aOSnq

t

B12 (17,3)=_aOSnq

t

B12 (18,6)=-_O_paO_nq

Elements of (10MN + 3M + 3N + 2) x 1 submatrix [B13]

B13 (1, 1)= 1

Elements of (6M + 1) x 4M submatrix [B21]

(-1) m+l
B21 (1, 1) -

_m

B21 (2, 1) =l,Smv

B21 (3,2)=l_mp

B21 (4, 3) =lSmp

B_I (5, 4) =l_mp

B21 (6, 1) =lesSmp

B21 (7, 2) =le_6mp
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Elements of (6M + 1) × 1 submatrix [B23]

B23 (1, 1) = -1

Elements of (6N + 1) × (5N + 1) submatrix [B32]

B32 (1, 1) =2aO

Ba2 (2, 2) =aO$_q

B32 (3,3) =a05_q

B32 (4,4) =aOSnq

B32 (5, 2) =e_aO_nq

_d o

B32 (5, 3) =--_o3naO6,_q

B32 (5, 5) =aO_nq

o21

B32 (5, 6) =_o_naO6nq

B32 (6, 3) =e_aO6_q

a9 o

B32 (7, 3) =---_oaOS_q

B32 (7,6):(1- Cdl)aO_nq
Ro

Elements of (10MN + 3M + 3N + 2) x 1 submatrix [Fill

Fl1 (1)=pR20

Fll (2)=4plOR
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APPENDIX B

ELEMENTS OF MATRICES FOR LINEAR ANALYSIS

USING CLASSICAL MODEL

The non-zeroelementsof thesubmatricesKij, Bij and Fll in Eq. (4.68) for the classical

model are listed below. The parameter 6ij is Kronecker delta assuming the values zero for

i _ j, and one for i = j, respectively.

Elements of (6MN + 2M + 2N + 2) x (6MN + 2M + 2N + 2) submatrix [Kll]

KI1 (1,1) =--All®R
• 1

Kll (1,2)=2A12OR

4A220/
h'11 (2,2)- R

Kal (3,3)=2Alla_nlOR6m p

A12 o

h'll (3,4) =2(-R-- + Bllah)amlOR_m p

A_,_ 2B1_. 2
_c,, (4,4)=2(-k-_: + --_-m + U,l.2)tOR_mp

A,_ 2B_2 D22 ._2/O_n
](11 (5,5):2(--_ "{- T + -_-_) n q

__ B22 _ B22 -_3/(11 (5,6) ----2[( -[- "-_-j _- (-'_- + )]_2]t_nlO_nq

1(11 (6, 6) =2 t R +--_'_n+ /_

A66 B66 D66_]105._.6n = Kll (8,8)

_ [A12 B12 A66 B66 3D66 _]am/3nlOR6mp6_q = -Kll (8, 9)
Ic,, (7, lO) = _-k- + -_ + (--k- + R: _ '_

• B12 2B66 D66 2

h'H (7,12)=-[A12+ BHah +(---_+ R R 2 )13n]amOl6mp6'_q =-IfH (8,11)

172



- A22 2B22 D,, 2 3B6_ 9D66)a,_]RlOSmvbnq
IQ1 (9,9)= [(_-T. + _ + _-T)_ + (A66 + --R-- + -_-

=1(11 (10, 10)

[A22 B22 . B22 _ . B12 2B66 D12 3D66 _a 2 ],It1, (9, _1) = L-k_-+ -k-5-+ (-_-_-+ )0_ + (-k-- + _ + _ + --k-_, mj

_nlOR6mp6nq = Kll (10, 12)

Kll (11 11)=[ A22 2B22B2 D2284 2(D12+2D66) 2 2 a2mR),, _--ff- + ---_._'n + "-_-n + R am_3n + (2Ba2 + D,I

O_2]lO6mp_nq = I(11 (12,12)

Elements of (4M + 1) × (4M + 1) submatrix [K22]

(EA)s
K22 (1, 1) - 21

I(22 (2,2) =(EA)_a2mI&.v

I(22 (3,3) =(Ed)_c_lSmp

I_= (4,4)=(Eioo)_.21_m,

1(22 (5,5) =(EIoo),a21&_ v

Elements of (4N + 1) x (4N + 1) submatrix [I(33]

2EAO
Kaa (1,1) -

R0

2EI,_zr

I(aa (2, 2) = [aJ + (EI._ + R---_

E_ _
I(aa (2,3)=-(EIzz + ---_o )---_O5.q

E I_ 4

Kaa (2,4)=-(EI_:_+--_o ,R3.. nq

EI_,) EI_=
K3a (2,5) =- [(GJ[ + EI,_ + _ + (_-no

EI_ _1 _-_-ffOS_q+

EI_,_, 21_
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I 9

I(33 (3,3) =(EA + -_5 )-_o_O.q

I_33 (3,4)=(EA + EI_j: /3_)_ (g&_q
R5 R0

EI_ _2, _3n 06

EI:._ a 0 6
h'aa {4,4) =(EA + ---_5 _,_}_o nq

IG3 (4,5) =(EL._ + --ff_-o/57_) O6_q

2EI.,_ EI_,_[_] 0
l,_(_,_)_-[m_ + (az + R---i-+ ---_-__"'_"J Ro6_

Elements of (6MN + 2M + 2N + 2) × 4M submatrix [Bll]

(-1) TM

Btl (1,1)-
O' m

Bn (3,I)=-16_p

Bll (4,1) =2aml&_p

Bll (4,4) =--16mp

Bll (7, 2) ---16rap

Bll (8, I) =--l_mp

Bn (11,1) =2c_ml_mp

Bn (11,4)=-l_r_p

Bn (12,2) =-ta_16mp
2

Bll (12,3)=-16_
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Elements of (6MN + 2:11 + 2N + 2) x (SN + 1) submatrix [B12]

B12 (2,1) =-2a@

B12 (4, 1) =-2aO

B12 (5,3)=-(1- _---_)aOSnq

B12 (6, 3) --_-_flnaO(_nq

B12 (6, 4) =-aO6nq

B12 (7,2)=-aO6,_q

t

B,2 (9,3)=-(1 - _-_)aO6_q

B12 (10,6) =-(1 - _R)avaO6nq

t

B,_ (11,3)=_-_ZnaO_nq

B12 (11,4)=-aO_nq

t

B12 (12, 2) =--_apaOt_nq

B12 (12,5) =apaO_n q

t

B12 (12,61)=-_--_nOtpaO6nq

Elements of (6MN + 2M + 2N + 2) × 1 submatrix [Ba3]

B13 (1,1)= 1

Elements of (4M + 1) x 1 submatrix [B23]

B2a (1, 1) = -1
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Elements of (4M + 1) × 4M submatrix [B21]

(-1) m+l
B21 (1,1)-

_rn

B21 (2, 1) =l_mp

B21 (3,2) -'l_mv

B21 (4,2)=-a_les_mv

B_I (4,3) =l_p

B21 (5,1) =c_mles6mv

B21 (5,4) =l$mv

Elements of (4N + 1) x (5N + 1) submatrix [B32]

B32 (1,1) =2aO

Ba2 (2, 2) =aO6n_

a._o

B32 (2, 3) =- "_5/3naOSnq

Ba_. (2,6)=(1 - _' )/3_aO_q
tg0

er

Ba; (3,3) =(1 + _o )aO_i_q

er

B3,. (4, 3) =_0¢_aO_n,

/_32 (4,4) =aO_nq

B3_ (5,2) =eraO_nq

B3_ (5,3)=-_-(1 - e")flnaO$.q
z_0 Ro

B32 (5,5) =aO6nq

B32 (5,6)= Roo + (1 - N)_o /3naO_nq
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Elements of (6MN + 231 + 2N + 2) x 1 submatrix [Fll]

Fll (1)=pR20

/711 (2)=4plOR
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APPENDIX C

ELEMENTS OF TANGENT STIFFNESS AND LOAD STIFFNESS

MATRICES FOR NONLINEAR ANALYSIS

The non-zero elements of the tangent stiffness submatrices Kij and load stiffness sub-

matrix L in Eq. (4.82) for nonlinear analysis are listed below. The parameter _ij is Kronecker

delta assuming the values zero for i _ j, and one for i = j, respectively.

Elements of (3MN + 2M + 2N + 2) x (3MN + 2M + 2N + 2) submatrix [Kll(fisheU)]

AllOR
h'll (I, 1) -- l

Kll (1,2)=2A120

Kll (1,3)=0

= All O Rv_m wm_ jmKll (1,4) 2

A120 ,
](11 (1,5) =T(Vn "_ flnWn)(Skn

A12®_ tv
Kll (1,6) -- -_ _..._ n + flnWn)6kn

1(11 (1,7) =0

A120,
](11 (1,8) =-'_(Vm,_ + flnWmn)_jm_kn

IQ_ (1,9) - _Re) fl,dv,_n + fl,_w_)_,_G._ + 0.5AllO Ra2m Wmn_jm_kn

4A220/
Kll (2,2)- R

Kll (2, 3) =0

Kll (2,4)=2A1201a_Wm6j_n

2A2_®l (v"(2,5)-
2A2201

IQ1 (2,6) - R2 fln(Vn + ZnWn)&:n
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I_'11 (2, 7) _-0

A2201,
h'11 (2,8) - _ tvmn + 3nW_n)_jm_kn

A2201 _, , _ , 6
Kll (2,9) - _ pntv_,_ + flnWmn)6jm(_kn + A12Ol°_m'amn_jm kn

=2AllamOlR(_m pKll (3,3) ' 2

J

Kll (3,4) =2A12a._Ol6mp + E 2AllamapajORwjI2
jml

Kll (3,5) Ax201- R ap(vpn + 3,_wvn)6ypSk,_

1(11 (3, 6) - A1201 av_n(Vpn + _,_U,p,_)6jpSkn
R

/(11 (3, 7) =0

A1201

K1_(3,8)- R j=_

g A120
t(11 (3,9) - A12Olam/3n(vn +/_nWn)6mp6kn + E R

R j=l

/(11

J

_O_p_n(Vjn + flnwjn)_knI1

J

+Z
j=l

A22
(4,4) =2( -_.

K

+Z
k=l

All ame_pajO Rwjn6knI2

+ D11a4)O1Ri_mp + 2A12a2mOlwoSmp + A,lamORqoSmp

d

1(A,2
2" R + 2.466 )Ola2(vk +/3kWk)'6mv + E 2A110RamajapujI6

R j=l

g J K A 2,466
+ Z 2A120arnajwj12 + E E(--'_ + it )Oamap(Vk -_- flkWk)VjkI6

j=l j=l k=l

j J K

_ 3AllORajapamW_I232 o + Z E l'5AllORajam°_pwjkl'32 2 .+

j=l j=l k--1

J

+EE_(____+__J/¢1_A12 2R66)Oamav(vjk +t3awJ a)2124 + Z2A12OarnapwjI6
j=l k=l j=l

J K J

__ 2A66+ Z Z ( + ---R-)Oamav/3k(vk + _kwk)wjkI6 + Z 2A120avajwjls
j=l k=l j=l

179



AI_ 2A66 ]Ola 2 2
h'11 (4,5) =(-_ + ---_, m(Vq + fl_U,q)Wm_kq_jm + A12Olc_m_qWmq_kq_jm

A660l A22®l (v
R O_m_qUmq_kq_jm "_ T _ mq + _qWmq)_kq(_jm

K

2 2A66 ]la2
- A6601amVmq6kq,jm + Z(_-_ + ----_, ra(vk +/_kWk)WmkZ15_jm

k=l

+(A12 2A66)OO_rnaj(Vjq +/3qWjq)WjI14(_kq
+z..,, R +---_

j---1

J K

X;-"' Aa2+ _ z...,(---_- + )ajam(vjk + 3kwjk)wjkI14115
j=l k=l

I(la (4,6) - R + )Ola2/3'_(vn + flnWn)Wp6kn6jp + A12OlapWpn(_kn(_jp

A660/ 2 A2201. ,
-_ apflnUpn6kn6jp + R-----_-pn(Vvn + flnWpn)6kn6jp

K

2 _"_(A12 __-A660Iap/JnVpn_kn(_jp + A.._'--R'- + )la2P 3n(vk + 3kWk)WpkI30(_jp
k=l

+ Z..._" R + )OCtPO_J3n(Vjn + /3nWjn)WjI33(Skn

j=l

J K

N-"( A12+ Z z...,'--R- + )c_jc_pfln(Vjk + flkWjk)WjkIaoh3
j=l k=l

J A660

IQ1 (4,7)=-_A66®lc_m/3,_(v,_ + _nw,_)_mv_k,_ - Z --R C_m/3n(Vjn +/3_Wjn)I6_kn
j=l

J

+ Z All ORO_mC_pO_jWjnI2(_kn

j=l

A220l ,

/(11 (4,8) =-A6601Cr2m(Vn +/3nWn)6mp6kn + _[Vn + 3nWn)_mp6kn

d A660 _ _ _ d A12 2,466

j=l j=l

J

d _--_(A12 2A66'Oa a (V'n
-- Z A660apajvjnls6kn + A.._" R + --_) P j_ 3 + 3nWjn)Wj 134bkn

j----1 j=l

J J
A220 ,

+ Z _(vj. + 13nwj,_)I16kn - E A6aOapam(Vj,_ + 3,_wjn)I66k_
j=l j=l
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h'n (4,8) J u J
_--_ A12 2,466 )O_jWp(Vjk + _kWjk)WjkI30134 ÷ E A12Octjcont'd. =+E)--_(--R --+ R

j----1 k=l j--1

J K

*c_p_nwjnI56k_ + E E (Ap" ÷ 2.466R )o_j_p(Vk ÷ _kWk)WjkI5130

j=l k=l

A2201 _ ,
_11 (4,9) =A120Ia2m(_vn + w_)6mp6k,_ + "--_pntv,_ +/3nw,_)6mpSk,_

J A220 ,_ , J

÷ E T/gn(vjn ÷ ]_nWjn)II_kn ÷ E A120°_mCtP(]_nVjn ÷ Wjn)I6_kn
j=l j=l

J J

j=l j=l

J K 1, A12 2A66 -,,.-)a_"l(vk ÷ -- ./_kWk)2_mpI22
+ E A12®_japwynIs_kn + E :2(--if- +

j=l k=l

J J J A660

- Z A000_p_j_nvs_I_k_+ Z A..O_j.,__.,__k_- F_ --g-%_
j=l j=l j=l

'( '04 a _(vnA12 2A66

j=l

÷ y._..¢('---_ ÷ )O0_paj/_n(Yjn ÷ /_nWjn)WjI34_kn
j=l

J K 1 A12 2,466+ Z Z -_(-fi-+ _)_._'_p(vJ_ +9_wjk)_'I..h_
j----1 k=l

J K 2A66, ,

+ E E(@ + T)amaP(Vk + t3kw_)( vjk + _kwjk)IJ22
j=l k=l

J K A 2.4_66

j=l k=l

a K A 2,4_66
+ E E(--_- + R)V_JaP_n(Vjk + _kwyk)wjkI3oI34

j=l k=l

J K

+ZZ :1.5An Rc_ jv_po_m wjkI23125

j=l k=l
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A22 D_2 2 2_2®lwo_.q _A__oqo6nqI(11 (,5,5) =2(-_ 3V "-_)[_nOlC_nq -t" 31-

K 2A22,,_ K 2A22

k---1 k=l

K 2A22_ l'v. K 3A22,,

k=l k=l

J 1.A12 2A66_a201w26n. ,I K 3A22,,

j=l j=l k=l

J K 1 A12 2A66 _a21w2i. d __,(A12 2A66)c_lwj+Z_2_(-g-+--g-, J j_.o+_,-h-+-- F- w_._
j=l k=l j=l k=l

1(11 (5,6) =2(-_-: + _Ot3nlWO6n q + A12 ,_,_

K K

2A22l. "'_ v 2A22 _ _ It

k=l k=l

K K
2A_ 3A_2

+ E --R-_ l(vk + 3kwk)I, + E -_13,_l(vk + 3kwk)219
k=l k=l

.I 1(A12 2A66,_ a2Olw2t5 J K 3A22 l
+ _ P--g- + --ff-J'_ J _ _, + _ _ 7-_-r_ (vj_+ _j_)-_i_

j=l j=l k=l

Y J" 1 A_2 _ s K+ _ _ -_t--ff + )a_3,_lw_ki1 ° + _ _-,(A_2 + ---z- _2A_6Z.._" R 1_ )ct-_nlwjwjkI4
j=l k=l j=l k=l

K

I(11 (_, 7)-- A_Ol(_m_nWm_nq6jm - E @l°_mflqWmkI4'j TM

k=l

K

k=l

K

I(11 (5,S)=(A22, R 2 -- A66ce2)Olwm_jm¢_nq + ___OlOemUmejmenq + E A12" r _
--"_tOlm ltmk f4 0j,m

k=l

K K

_2 A_+ E ¢]nl(t'm_ + _wm_)I,_jm + E R--V_l(vmk + ]_kWmk)[3(_J TM

k=l k=l
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K_i (5, 8)
conttd.

K

=+Z
k=l

K

+E
k=l

J

+E
j=l

J 1 A12 2A66 ia2OwOlao6nq_","t(_v_,_+ w.,k)I4_.,+ Z _(--_- + ---g-, _ J -
j=l

K

3A221(vk
---_, - +/3kwk)(vmk + j3kWmk)I96jm -- E A66a_lwmkI4_jm

k=l

J K

K 1 A12 2A66, ,_ 2 r i,_ _2 __E 2(--R-- + T )O'_wjkilO 1. + E E (- 27 )O'_WjWjk]4112

k=l j=l k=l

J K 3A22, ,

+ Z Z 5-Ut_5_+ 9k_'J_)_I9I'_
j=l k=l

A22 _ @/(11 (5,9) =(-_ + Alza;a)OlSnwm6jm6n q + Ola,_/3,_um6jm&_q

K K

A22 __+ E R--5-l(vmk + _kw,_k)I76j,_ + E 13q_n(vmk +/3kw_k)la6jm
k=l k=l

K A22 ...... J 1 A12 2A66, ,_,_ Owjll2Onq

k=l j----1

K 3A22. ,, 1¢ A66ctmlVrnklr6jm

k=l k=l

K K

+ E 2 @ 2A66)la2(vk +/3awk)wmI76jmA121C_m/JqWmkla6jm + E( + ----_.

k=l k=l

K K

A66,_ _'-lumkl7_'m _-'_( AI2 2A66 _la2 (
-- E ---R--_'my_ 3 + A.._--R-- + ---R' m'Vk + /_kWk)WrnkZl6_jm

k=l k=l

K AI'_ d K 3A9o

+ E ---_ --lOtm_numkI4_jm + E E --_ -/3n(t'jk + ]_kWjk)219Ill

k=l j=l k=l

J K I A12 2__ J K ,_+ E E -2(--R- + )a_nW_kIloIi2+ E E (A'_---R-+ ),_maj
j=l k=l j=l k=l

or K

XT"" A12 2A66 _a23,_w_w3_i4i_
*(Vjk + flkWjk)WjI7114 + E Z..._(--R - + ---R' J

j=l k=l

d K

+ E E (Al_--if- + )amcU(vj_ + 3kwjk )wjkI14116
j=l k=l
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A22 _32 2A22 ,-.,_ _ A12 :,:,2 ,

K 2A221 .... I¢ 2A22 :_ ltvk

k=l k=l

K 2A22;_ Itvk K 3A22l_ s tw

k=l k=l

J 1 Al2 2A66, _:_2,-,,.2_ J t,"3A22l( v
+ __.-_(--_-+--WJ°';/',,_'"J",,_+ _F_.-yys-,5_+_kwj_)2_j9

j=l j=l k=l

3 K

1 A,2 _)a_/3,_flflw_ki, °
j----1 k=l

J K A

_-"( _l: 2A66 ,

j=l k=l

K

A660/ 2 _ A661amflnflqWmki4¢_jmh'11 (6,7/ - "_ c_m/3qwmG_qojm - Z /g
k=l

K hi 2 ,_ ,,

+ Z -'_ -O_m'Ont(vrnk + flkWmk)13_jm
k=l

.A22 A_2
I(11 (6, 8) --(-R- T - A6_c_)Ol_.w,_Sjm6.q + --'_-Olc_r_,_u,_,Sj,_5,_q

K A22,,_ ,,o h" A22

+ _ --U.,,_t_,_v,._ + w.,_):_5,,, + _ --Ut(v._k +/3_w,,,k)s_6_m
k=l k=l

K

+Z
k=l

K

+Z
k=l

K

+E
k=l

J

+Z
j=l

J

+E
j=l

J

+Z
j=l

K

A66 arnflql wmk I4 6 jm

k=l

j=l

3A,,o

K

1 A_ 2A_a,a2a w_ I I?(--fi-+ -k-_ _._ _ ,o 1:
k=l

A12 2A66 ,a2fl w w-_I4I--h- +--y--: j _ _ _ _.
k=l

K 3A22a :v._

k=l
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A22 l_2 o @Olarnf32 Um6jm6nq/(11 (6,9) =( R2 _'n + A12am)Olwrn6jm6nq -t-

K ,422 K A2_
+ Z R_,.t_q(_mk+ _kwmk)IT_jm+ _ --_-tg_(vmk+/_wm_)I3_j.,

k=l k=l

K A22 3 1 A._2 2A66 2 2 2
+ Z --_-.13,_3q(3kvmk + w_k)I46jm + Z -2(--_ + _)aj3.S)wjZa23,_q

k---1 j----1

K K

3A22 l_n_ tVk o
+ Z --_ _" _'q_ + t3kwk)(Vmk + t3kWmk)Ig_jm -- Z A66a_I3qlvmkIv6j,_

k---1 k=l

K K Ao 2A6 6
+ _--"_ A121amwmkls6jm"2 ___ Z(__. __1" -_ 1_ )l_2 ]_q(Yk + [_kWk')WmI7_jm

k----1 k=l

K K

R
k--1 k=l

K

-k-- + )l._q(vk + _k_k)_m_I_6_jm
k=l

J K 3A2_

+Z _2 5-_-_(vJ _+ _j_)-_111
j=l k=l

+ Z Z-2(--R--+ ----_JK 1_A,2 2A66)a]_3n/3qw]ki, oi12..

j=l k=l

K

j----1 k--1

K

J _-',(A12 2__-t- Z Z.._" R + )lam°eJ_q(vJk + [_kWjk)WjI7ll4

j=l k=l

J K A12
-_ Z Z(---R + _'_ )l_mC_j_q(vjk + flkWjk)WjkI14116

j=l k=l

K A12,

I(11 (7,8) =(A12 + A66)C_m_nlO_mp_nq + Z--_-lC_m_Vk + _kWk)13_mp

k=l

J

-Z
j=l

J

-Z
j=l

J K

--R --jA66a _nOWjl5_nq + Z Z _-_ap(Vjk-_ _kWjk)IlI3

j=l k=l

K

Z @O_j_qWjkI415

k=l
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K K

k=l k=l

d j A660_ 1320wi!56n
+_kWk)IT_mp + Z A'l®RamapajwjI2_Snq- Z --if- i n o q

j=l j=l

d K A660_./_n[JqWjki4i 5 d I( @

j=l k=l j=l k=l

d K d K

+ Z Z AI1R°_m°:pg2jWj k[218 + Z Z @ O_pt_n(vjk + [_kWj k)1113

j=l k=l j=l k=l

A22 D2"_ D66 )a_lORSmpSnq + _2 0lWOSmp_nq

A12 ,.-, ¢ ,, K A22 ,r -, K ,42_2
+ -:_-_wqoompo,_q + Z '-_ ''t'°kvk + wk)I4_p + Z n 2 3ql(vk + 3kWk)

k=l k=l

K A22 .... g 3A221(vk
*larrup + Z --_-pn,(vk + 3kwk)IT6mp + Z --_-_5- , +/3kWk)2196mp

k=l k=l

J

+53
j=l

J

+Z
j=l

J K

+ZZ
j=l k=l

d K

+ZZ
j=l k--1

d K

+ZZ
j=l k=l

d K

+ZZ
j=l k=l

J K

+ZZ
j----1 k=l

./

j=l

A22 J 1,A12 2A66 2 2
--_-Owjli_nq + Z -_( _ + --_ )c_jOwjI2o(_nq

j=l

AI_. . a K 3A20

j=l k=l

A22 d g A20

--'_ "(/_kvjk "11-Wjk)llI4 + Z Z _ _]q(vjk JI- _kWjk)Ill3

j=l k=l

')2 d K

/3n(vk + flkWk)Ill7 - Z Z A6_aJ(_mI2 + crpls)u, jkI4
j=l k=l

1(A12 2A66_v_2 2 d K A12
-_,---_- + ---_, jwjkIloI20 + Z Z(---_- + _'_)c_wjwjk'4'20

j=l k=l

3A22
-"_tVk + 3kwk)(Vjk + flkwjk)IlI9
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1(11 __ Ao2(8,9) =[( + 3_--R-5-j + (_ D22, D12 +R2D66 )a_]flnOlSmp&_q + -_Ofl,_lwo6..p6,_q

__ J 3 A22
At" Oflnq°Dmp_nq 3t- Z A120°_j°_mflnWjI25nq nt- Z -_- OflnwjIl(_nq

j=l j--1

d 1(A12 2A66)o_20fl n 2 J
+ E 2" R + _" j wjI2o6.,- Z a660ajavfl.wjI_6nq

j=l j=l

J K

+ Z @ O0_jflnujIl_nq -- Z A661°_2m(Vk "It flkWk)'[7_mp

j=l k=l

1,2 A22 .... K A20

k=l k=l

K A22 K 3A_.2_

k=l k-----1

d K A12 d K 3A22_ntV.k

j=l k=l j=l k=l

J I¢ Aoo J K Ago

"_ E Z --_-fln(flkVjk + Wjk)[1.[4 + E Z --_. flqfln(vjk + flkWjk)[lI3

j=l k=l j=l k=l

J K A22 _ J K

+ Z Z --_. tvjk + flkwjk)I, I7- Z Z A66am(ajI2 + apl6)vjkZz
j=l k=l j=l k=l

J K A66amflkUjkhI r d K- E Z --if- + Z Z A,2ajamflqwjkl_ls
j----1 k=l j=l k=l

3 K g K 1(A12 _A_,)a_flnw_kh6i,, 6- Z E Ae6aja#3nwjkI415 + Z E -2"W +
j=l k=l j--1 k=l

J /( J K

-- E E A66arnapflkW,ika[7 + E _f'_(A12 + --w--) _2A66,,z..._" R n -a"flnwjwjkI412°
j=l k--1 j=l k=l

g K 3A22
"_- Z Z ---_/Jn(Vk + flkWk)('Ojk q- flkWjk)II[ 9

j=l k=l

J K A12

R
j----1 k--1
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Kll (8,9)

cont'd.

/1"11

+

j=l

J

+Z
j=l

(9,9) =[(@

j=l

J

+Z
j=l

J

+Z
j=l

K

+Z
k=l

K

+Z
k=l

K

+Z
k=l

J K

+ZZ
j=l k=l

J K

+ZZ
j=l k---1

J K

+ZZ
j=l k=l

J K

-ZZ
j=l k=l

J K

j_l k=l

J K

V'_ a-__ -_= + Y_ z_.,, R + )_¢c,m(vjk + flkwjk)wshI2_
j=l k=l

d K
. Aa2 2A66

k=l

K
EArn 2A66

(---if- + _)ajam(vjk + 3kwjk)wjkI16hl
k=l

+ '34 -_a2)R + 2(D12 +R2D66 )Oemfln22 + Dll Rce4]Ol_rnp_nq

9 A22 2 ,All ,.,,_+ (A12o_ + --_-fln)Olwo_mp6nq + ('-_1_,.. m + fl2n)OqO6mp6nq

J J

+ Z A120(O:j°dml_2 + O'jO[pI5 + O_pO_ml6)Wj_nq "_ Z A_222{_)f12wjZ1_nq
R

j=l

J

2 ( --if-+l'A'2 2A66)a_Of12nw_12°6nqR + Z AllORa'jc_p_rnUjIeenq
j--1

K

2 2

k=l

_2 K A221fl 3n
flnl(vk + flkWk)136mp + E _ q (flkVk "4-wk)I46mp

k=l

K

A22 , _lfl.3q(vk flkU'k)219_mp--_Tlflq(tk + flkWk)Ir_mp + Z +
k=l

1 A12 2A66"_a2 ltv, .I-_(---_ + "--_-J rn , . + flkwk)212Semv + Z Ocrjfl2ltjIl_nq

j=l

@ s K 3Ao2aJ3n3quJfl'I4 + Z Z _ fln_q(vjk + 3kwJk)219lx°
j=l k=l

A22 s K"-_nflq(3kVjk + Wjk)[lI4 + Z Z fln(Vjk -{- flkWjk)'[lI3

j=l k--1

A220 t v. J K A66_ s N,.u.kI3I 5
"-_"_'qt j,, + flkwjk)I, lr - Z Z "--R-'C_p_,n_.,, j.

j=l k=l

J K

@O'mflqflkUjkI217-- E Z A660ZmO_jflqVjkI217

j=l k=l

3 K 1 .A12 2A66 _ o,o ,_ o

A66aj_p3nvj_lsI5 + Z Z "2(--_- + ---_ )cQPn_'qW;kI'°I2°
j=l k=l
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K

J _--_(A12 2A66 ,_
= + _ _-"" R + ---R--)_5'&/3_wjwjd412°

j=l k=l

J K
3A_

+ Z Z --_n/3q(vk + flkwk)(vjk + _kwjk)IlI9

j=l k=l

J K

_-',(A12 2A66 ,+ _ _.__,_ + --W-)_j_,_(vk +/_k_k)_d2_r_
j----1 k---1

+ZZ(@+_..._R__JK 2A66)_jCemflq(t,j k +flkWjk)WjlTI21

j=l k=l

J K

"_ ----_ )OzjO_mflq( V k + flkWk )Wjk[2116
j=l k=l

d K 2A66 ,

j=l k=l

J K J K

2
+ Z Z A,,Ro'jo'po._ujkl6Is + Z Z l'SA"Ra_ap°_wjk12312r

j=l k=l j=l k=l

J I(, J K

+Z Z _Al_Ro_o_o,_w_.w._j__3+Z Z A12_._v._oI_
j=l k=l j=l k=l

d IV

+ Z Z A,2(ojt, mI2 + _ja'pI5 + ap_g6)wjkIs
j=l k=l

J K
1 A12 2A66

j=l k=l

d K

Z Z (A12 2A66 ,
+ --_)avamtVk + flkWt,-)(Vjk + flkwjk)I612S

5;=1 k=l

d K .

+ ---ff-)aiap/3,_(vk + flkwl:)wiI315
j=l k=l

K

+ T)O_jO_pfln(Vjk + flkWjk)WjI3h4
k=l

Ii

Z( A12 _-_-_- )(tjCtpfln(t, k+ + flkwk)wjkIsI2G
k=l

K
v--,. AI__ 2A66. _

2_,_---_ + T )O_j&pfln(Vjk 27 flkWjk )WjkI26134
k=l

+

+

J

+Z
j=l

J

+Z
j=l

J

+Z
j=l
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Elements of (3MN + 2M + 2N + 2) × (3MN + 2M + 2N + 2) submatrix [L( itsheU )]

L(1, 1) =0

L(1,2) =2O(R + wo)

L(1, 3) =0

L(1,4) =Owm_jm

5(1, 5) =(vn + _nwn)O_kn

L(1, 6) =(_.v. + w_)OSk.

L(1,7) =0

1

L(1, 8) =-_(Vm,_+ Z,_Wm,_)O'Sjm'_k.

1 v
L(1,9) =_(j3n mn Jr Wmn)O6jm6kn

L(2,2) =20(2/+ q0)

L(2, 3) =2amOlWm6jm

L(2, 4) =2amOlUm_jm

5(2,5) =0

L(2, 6) =0

L(2, 7) =am Olwmn_jm 6kn

5(2,s) =o

L(2, 9) =am_)lltmn6jm6kn

L(3, 3) =0

J

L(3,4) =2am®l(R + Wo)&_p + E 2apOWjI1
j=l

L(3, 5) =apOl(%n + t3nWpn)6jp6kn
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L(3, 6) =apOl(fl_ Vp_ + wp,_ )Sjp6k_

L(3, 7) =0

d

j=l

J J

j=l j=l

J
2

L(3,9) =c_m®l(fl,_vn + wn)_._pt_k_ + Z 5 ap_'_®vj_II&'n
j----1

J J

j=l j=l

3

L(4,4) =0(21 + qo)Gnp + E 2cuOujI1
j=l

L(4, 5) =ap_nOlupnbjp_kn

L(4, 6) -=apOluprz_jp_kn

J

L(4,73 =_mO/(fl_v_ + wn)SmpSk_ + Z 20_pflnOVjnZ6_kn

j=l

J J

j=l j=l

J J

2 _flnO(ajI1 arnh)'ttjnSknL(4,8) :Z _apfln@ujnIs6k_ + Z
j=l j=l

J

L(4, 9) = _--_,_jOujnliG,_
j=l

L(5, 5) =O(2/+ qo)Snq

L(5,6) =flnO(2/+ qo)Snq

K

k=l

K 2 I;_+ E 5 a_qlw_kls6jm + Z c_mfl,flwmkI4_jm
k=l k=l

K

L(5, 8) =amOlUmC_nq q- E amlUmkl46jm

k=l
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-'1
k---1 k--1

L(6,6) =O(2/+ qo)_nq

K

L(6, 7)=amOlwmSnq + Z laml(3kls - 3.I3)vmk6jm
k=l

K 2 K

+ Z -_C_m3qlVmkIz6jm + Z a_twmf186jm
k=l k=l

K K

k=l k=l

K

L(6,9) =C_mOlUm_nq + Z amlUmkls_jm

k--1

L(7, 7) =0
K K K

L(7,8) =Z _a_l(/3nIs - j3qI,)wk(_rap + Z 2e_mflklwf136_" + Z amlvkI36mp
k=l k---1 k=l

d d d K

+ Z 20_jflnOWjlS(_nq + Z 3 fln(_(O_pI1 --O_m!6)Wj(_nq + Z Z O_pvjkllI3

j=l j=l j=l k=l

J K 1 J K 1+ Z Z 3 flk(c_p[1 + c_ml6)WjkI3 + Z Z fln(O_p[1 + cuIs)wJkgs
j=l k=l j=l k=l

J K

+ Z Z 3 flq("jI5 -o_ml6)wjkI4

j=l k=l

d K

L(7,9) =o_mOl(R + WO)_mp_nq + Z O_p(_WjZl_nq + Z _ OLmlvkl8_mp

j=l k=l

K K J K

"}- Z 3 (_ml(flnI3 + flqIT)Vk(_mp + ZC_mlWklS_mp + Z Z O_pWjkliI8

k=l k=l j---1 k=l

J K J K

+ Z Z 313k(apI1 +e_raI6)vjkls + Z Z 3 fin(apex +ajls)vjkla
j=l k=l j=l k=l

J K
1

+ Z Z 5 flq(araI6 -c_jls)vjj7
j=l k=l

J J K

L(8,8) =1®(2/+ qo)6,_p6nq + Z ajOujI,6.q + Z _ o_jujkI, I4
j=l j=l k=l
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J 3

L(8,9) : 3,_O(2/+ qo)6mv_,_q + E 5aJ_3nOujIl'5'_q + E _'_0(avls + amh)uj6,_q
j=l j=l

J K J K1 1

+ E E 5/3k(amI2 -avgs)ujkI; + E E 5/3'_(ajI' + avZs)ujkI4
j=l k=l j=l k=l

d K
1

+ E E 5 3q(amI2 + ajll)ujkls
j----1 k---1

J J K

L(9,9) =10(2/+ qo)_mp_nq nt- E aj®ujll_nq + E E ajUjkIlI8

j-----1 j---1 k----1

Elements of (2M + 1) x (2M + 1) submatrix [I(22(fi,¢r)]

I(22 (1, 1) = (EA)_
2l

1(22 (1,2):0

I(2_. (1,3) =0.5( E A )_a_ w_m

1(22 (2,2)=(EA)_a_l_,_ v

J

1(22 (2,3) =E(EA)sarnajapwsjI2
j=l

/(22

J

'_ 2 E(EA)sama, japUsji6(3, 3) =[0.5(eA)_ql + (EI)_a;nl ] am6m p +
j=l

J

+ E 1.5(EA)sarna_ 2apw_312a
j=l
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Elements of (2N + 1) × (2N + 1) submatrix [I(33(_r)]

/(33 (1,]) =2_(_

(EA)_

](33(1,2)-- R20 _)(Vrn'_-_nWrn)

h33 (1,3/=_oZ_(v_ + _w_)

1(33 (2,2/=[(EA),. (EI),.. 2 (EA2)_Ow_o6n qR----Y-+ --RTo_ l_'_°_"q+ Ro

K (EA)_ K E__)_/3_(vrk+ Z R--_o _q(vrk 3t- _kWrk)/3 -_ Z ( Jr- _kWrk)/7
k=l k=l

1; 3(Eg)_ I( (EA)_

k=l k=l

K33 (2,3)= L _0 + n gO

K (EA)_/3n/3q(v_k K (EA)r+ Z -_ + _w_,,)/_+ Z R---_-(v_ + _'_)/,
k=l R° k=l

I," 3(EA)__ K (Ed)_

k=l k=l

I(33 (3,3) -[(E-_Ao)_ +/34_]0_q + (EA)_Ow_°6n_R_

K K

Jn- Z (_)r. _n(Vvk __ /_kWrk)i 3 __ Z (EA)r_q(Vrk- "_ _kWrk)'7
k=l k=l

K K

+ Z 3(_),-/3n/3q(V_k + wrk)14_=, 2Ro + _w_k)_/9+ _=,F"(E-_)__._,(__v__oo
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TheintegralsI1 to I34 in the elements of the submatrices Kij and L are given by

l

11 =/
-/

/

I2 =/
-l

O

-0

O

-O

l

Cos(a jx )Cos( )Cos(apz )dx

S in( ajx )S in( amx )C os( apx )dx

Sin(flke)Sin(flnO)Cos(flqO)dO

Cos(flkO)Sin(fl_O)Sin(flqO)dO

I5 =f Cos(amx)Sin(ajx)Sin(apx)dx
-l

l

I6 = ff Cos(ajx)Sin(c_mx)Sin(c_px)dx
-l

0

17 = / Cos(fl,_O)Sin(flkO)Sin(flqO)dO
-0

0

h = / Cos( .O)Co (&O)Cos(GO)dO
-0

0

I9 = f Sin2(flkO)Sirt(fl_O)Sin(flqO)dO
-0

0

Ilo = / Cos2(flkO)Sin(flnO)Sin(flqO)dO
-0

1

h, = f C os2 (aj x)Cos(am x)dx
-l

l

I12 =f Sin2(ajx)Cos(amX) dx
-l
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(9

I13 = / Sin(/3kO)Sin(/3nO)Sin(_qO)dO
-0

l

fO _"114 = C s(c_jx)S_n(ajx)Sin(c_mx)dx

-1

®

115 = / Cos(flkO)Sin(/3kO)Sin(/3qO)dO

-o

®

[16 =/

-®

1

]17 =j

-1

l

118 =/
-l

/

119 =j

-1

l

12o =/

-l

t

121 =/

-1

(9

I22 _-/

-(9

l

h3 =j
-l

1

h4 =/
-l

(9

hs =/
-19

Cos(_kO)Cos(_O)Sin(flkO)Sin(flqO)dO

Cos 2(a.ix )C os( apx )dx

Sin 2(a jx )CoS( apX )dx

C o_2(_j x )Cos( _ x )Co_(%x )d_

S iT_2 ( a j x )C os( o_m x )C os( o_px )dx

S in( c_jx )C os( a jx )S in( arnx )C os( a px )dx

Sin _"(fl kO)C os( /gnO)dO

• ,1 . .

S_n'(_jx)Szrz(amx)Strl(apx)dx

Cos2(ajx)Sin(_mx)Sin(_px)dx

Cos 2(flkO )C os( /3nO)dO
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0

I26 = / Cos(/3kO)Sin(flkO)Si,_(fl_O)Cos(/3qO)dO
-0

0

9 r
I2_ = Cos'(/3kO)Cos(/3nO)Cos(/3qO)dO

-0

0

[28 = / Xi_2(/3kO)Cos(_nO)Cos(t3qO)dO

-o

l

h9 :/Sin(c_jx)Sin(amX)Sin(apx)dx

-l

®

I3o = /
-®

®

hi =/
-(9

(9

Ia2 =/
-6)

l

133 =/
-l

l

Ia4 =/
-l

Cos(flkO)Sin(_kO)Sin(_O)dO

Cos2(ZkO)Cos(ZqO)dO

Sin2(_kO)Cos(_qO)dO

Cos( ajx )S in( ajx )Cos( amX )Sin( a,px )dz
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APPENDIX D

ELEMENTS OF RESIDUAL FORCE VECTORS

FOR NONLINEAR ANALYSIS

The non-zeroelementsof the residualforcesubvectorsRsheU, Rstr and Rr in Eq. (4.81)

for nonlinear analysis are listed below. The parameter _ij is Kronecker delta assuming the

values zero for i _ j, and one for i = j, respectively.

Elements of (3MN + 2M + 2N + 2) x 1 residual force subvector [RsheU(us_u;p)]

For the sake of simplicity the residual force subvector [Rshell] is written as

_lext. _.inl.
Rshell _- P "_ shell -- a shell

in which the elements of rpint. 1t a shellJ are

Fsint. A110R N A120, M AuOR 2
he,, (1) - l qo + 2A120Wo + E -_(vn + fl,_w_) 2 + E 2 c%_w_n

n=l m--1

+EEa ' M A120, o
m=ln=l m=l n=l

Fsint. 4A2_01 N A_21(v_ )2 M
hell (2)=2A12Oqo + --" WoR+ E _ + flnwn + E A1201c_nw_n

n=l m=l

._I N M N
A1201 2 _ A2201,

m=l n=l m=l n=l

N A12c_mOl

*shell (3) =2Alla_OIRumSmp + 2A12amOlwm_Smp + E R
r_=l

M M N A1 ,_Ro2L_2 2 2
* (Vn "}-flnWn)_rnp + E AllOR_m°_pWmI2 + E E 2 mO_pWmnI2

rn=l m=l n=l

M _ A120&p
-]- E 2R (Vmn + flnWmn)211

m=l n=l
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Fsint. .A22 a 4m)OIRwmlimv 2A1
hell (4) =2A12omOlum6mp + 2(--_-_- + Dll + 2a_nOlwou'm6mp

N

o 1 Aa2 2A66 ]O/a,2 (Vn o
+ AllC_mORq°wm_Smp + E 7_('--ff- + --if-, rn, + /3nW'_)'Wm(Srav

n=l

N N
A6601

- E ----ff--am3,_(v. + _,_Wn)Um.6mv + E Al:Olaa(/3nvn + w,_lWmn_Smp
n=l n=l

N AI
A2201 o

-]- E R----4f---(vn q- flnWn)(Vmn q- flnWmn)_mp q- E 2AllORa_n°pUmWm[4
n=l m=l

N M M

-- E A6601a'_n(Vn + _nWn)VmntSmp -}- E AllORaama, pWmlla3 q_ E A12a'm

n=l m=l m=l

AI 3,1 N

*Ow_12 + E 2A120°:m°ZpW2m[4 - E E A660°_p°m(Vmn + 'nWrnn)VmnZ4

m=l m=l n=l

hi N

_",( A12 2A66 .,,-, ,+ _ _--if- + TJ_C_maptv,_ + i3,_W,,)W,_VmnI4
m=l n=l

M N 1(-412 2A66,,.,, , M N A220
"at- E E 2" R -{- T )_OtmO_p(ymn-{-flnwmn)2wmI15-}- E E 2R2

m=l n=l m=l n=l

M N

'_( A12 _)Oamap/_n(Vn*(vm. + 3nWmn)2Ix + E z...., --_ + + _nWn)WmWmnI4
m=l n=l

M N M N AI_)--1')''_'

+ E EAl2Oama'p(flnVmn"kWmn)WmnI4 + E E 2 amWmnI2°o
m=l n=l rn=l n=l

M N M N

+ Z E l'5AllORaamCtpWmW_tnIl3 + E Z AllORC_2OpUmnWmnI4

m=l n=l m=l n=l

h,l N

_EE oo °
R apl_n(Vmn -{'- flnWmn)UmnI4

m=l n=l

,o D22 A1 o_i,t._hell (5) = "Z(----_"A22 + -_D22 )_2nOlvn_n q .._ 2( "_ /Jn--_-)3nOlwn_nq "_- --Rz-Oqo(vn + 3n

M A12 _,,

* Wn)(_nq -_- _2201wO(VnR -{- flnWn)_nq "J- E "--R -O_mloli'vmn + _nWmn)Itm(_nq

m=l

M 1 A12 2_66 M A12 °_mfln Olwm wren 6nq+ Z + + + Z
rn=l m=l

- Olam/3,_W._Umn&_q- E As6Ola2mWmVm'_&_q + E --_OlWm
m=l m=l m=l
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Fsint. N A22 ,, ,,h_n (5) N A221,

cont'd. = *(Vmn +/3nWmn)Snq + Z --_pqqVn + /3nWn)213 + E --R-a --[vn ÷ _'_wn)aI7
n=l n=l

N M N A I--22",_2A22l

n=l m=l n=l

M N

[ A12, , A12 2A66
-- A66amlvmnWmn + (R + ---R)

l
m=l n=l

A66 A_21
*O_m(Vn + /_nWn) wmwmn --_'-O_m_nl_mnWmn + --_'-(Vrnn + _nWrnn)(_nt'mn

M N

+wm,_)]15+ E Z 1.5A22l, M N l(A,2

m=l n=l m=l n=l

2A66 _2 ltvn M N
+----_, rn , + 3nWn ,2 0.5A12am3qlwrnni 6

m=l n=l

h,t* _ + fl,, )/tnOlv,_Snq + 2( + _4n )OlWn6nq + --_O/3_qo(/3nWn

2A22 ...i _, , M A66 ,_

m=l

M M

-- A6601am_nWmVmn_nq

rr_= I rn = l

M l (Al,2 ___ M

m=l m=l

_I Aoo N A22l _ , _ A22l

m=l n=l n=l

_ 2A221. , M N [ Ai2 l

n=l m=l n=l

'_ A12 2A6_ _a:
*_m(Vmn + [_nWmn)Umn -- a_,a;nlvm.wm, _ + (--if- + --_, mlWmWmn(Vn

A_gl

M N M N 1 A_21.5A221_ ,

+ Z Z -_ "pqtVn+/_nWn)(Vmn +/_nWmn) 217+ Z Z'2(--R -
m=l n=l m=ln=l

M N

2A66,_2 ,_ Fv 2
+---_) mPq , n + _nWn)WmnI8 + Z Z 0"SAl2Ce2rnlw2nl6

m=l n=l

200



flint.shell (7) = [(AllOm2 +/3,_-_-2A6s )OIRumn + (A12 + A66)am3_Olvmn + A12amOlwmn

N

A12 l(v,, +/3nw,,)(v,_n + _,,A66,_ _ Ol vn --

n=l

N _ M A66*wm,_)SmpI3 - E arn_ql(v,_ +/3n w_ )Wm,_SmpI5 -- Z ---ff-a,-n/3n 0
n=l m=l

M hi N A--12

*(Vmn + /_nWmn)Wm(_nqI4 + E Alia_apORwmwmn6nqI_ + Z Z 2R
m=l m=l n=l

M N

A66 ^ f_
*ap(Vmn Jr _nWmn)2IlI3 - Z E --R "-_mt-'q(vmn + ]_nWmn)WmnI415

m=l n=l

M N

+ Z E0"5Allam 2'_ apRwmnI2[6
m=l n=l

"_ [ R + t_2 "_ am /3nOlWrnn "_ (--R --O_mum - A66amWm

+ -grwm)(v_ + Z_w_)Ot + (---g-qo + + Z_w._
N

+Z {,A12 Aool .
n=l

N
A22 _ ,r

+ + +
n=l

N

l"'SA221(v,_+ Znw,_):(v,_,_+ _,_ _n) ._pI7* (Vmn -[- flnWmn)6mpI3 -t- Z R3 w 6
n=l

M A12 A22 hi

+ Z (--_--amUm + --_-Wm)(Vmn + _.Wmn)OS.qI1 + Z [A,2a_nWmn
m=l m=l

1 ( A12 2A66 ]o/2 Wm(V n+ _,--ff- + --_, m , +_nwn) A66a_vm, _6am_,_Um_]®Wm6nqI2

M M

"_ E ( + T )O_mO(vmn "{- ]_nWmn)Wm_nqIll- E A66°_m°_pO(Vmn

m=l m=l

M N

A12 A2_. ,_ w_n)] (vmn"_ _n Wrn n ) Wrn _nq I4 -_- E E [ --R "- O_m ?£mn -Ji- --_" ( Pn Ym n -_-

m=l n=l

Fs int.boll (8)=
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Fs int, (S)
cont'd.

M N M N

0.5A22 _ tVmn= +i3,_wmn)I,I, + Z Z --_ _'q' + 13nwm'_)2I'I3 + Z Z 1.5A22Ra
m=l n=l m--1 n=l

M N 0.5A22
*(Vn + _nWn)(Vmn + 3nWmn)2IlI7 + Z Z R 3 (IJmn + _nWmn)317112

m=l n=l

M N

m=l n=l

M N M N

*wmnl2Zs + Z Z 0"5A'2a2_qW2mnI_I6 - Z Z A66°_m_P/3nW_nI'Is
m=l n=l m--ln=l

+ZZ(M X 1 __ +--_2a")a:(vn + 13,_w,_)W2mni2is
m=l n=l

M N

+ Z Z (z12 2A66 _o_2 ("mn+ -"-"_, m_, + /_nWmn)WmWmnlSIll
m=l n=l

M N 1(A12 2A66 _O2 (Vrnn 2
+ Z Z 2 W + ----R" m, + fl"W_nn)Wm.lsI'a

m=l n=l

[A22 /_2022 _ (D12 +2066)J_nlvm n{ A12amlumn + [ R + ,"n R3 +am R

,0.5A12

t[A22R +fln,_+24--fluD22 (D12 +R2D66 ) a2mjO2+ DI, a4mR] lwmn + ( Tqo+

A221, o
+ _ WO)(Vmn + flnWmn)l_n + (O.SAllqOR + A12wol)amWmn

A12 A,22
+ (--_-amUm + --_-wm)(v,_ +j3,_wn)flnl + A12a_l(flnvn + Wn)Wm}O&,_p6nq

N N

n=l n=l

N

A221"I- Z { O_rnUmn(Vn + ]_nWn) + --_ [(1 + t_2n)(WnVmn + VnWmn ) + 2_n

n=l

N

N N
1.5A221

+ _ -_ (v,_ +/3,_w,_)2(vm,_ + 13,_wm,_)_3q&_pI7 + _ Aa2a_lwmn(3,_v,_
n=l n=l

g 1 A12
m 1 2As6_a 2 l(vn

n=l n=l

_int.r,h,n (9)=

202



Fsint.h_U (9)

cont_ d.
• 2A66 _ M A12 f40U m ?;ran

= +-"-R )°'ml(vn + _nWn)2Wmni_mpli7 + Z "--_-_'m_n (' + flnWmn)i_nq
rn=l

hi

2 !(A12 2A66 A66oZmfln Vmn* I1 "3t- Z [ A120_mwmn "_ 2" R -4- -_)O_n_nWm(Vn "4- _nWn)- 2

m=l

M

A66o_m_2nUmnJOWm_nqI2 "4- E Ai20°_m°_p(_nVmn q- 2Wmn)Wm_nqI4
R

m=l

M M

@ Z flnOWm(Vmn "Jv flnWrnn)(_nqll -t- E l'SAllOR°_m°_pWmWmn(_nqI13

m=l m=l

M

M !(A12 2A66_a2 ZnO(Vmn 2 lORa2rn_p
"4- Z 2" R -[- -'-'_' m , -[- flnWmn)Wmi_nqI11 + Z A1

m=l m-1

M N A12 A,_ wmn)](vm_
m----1 n=l

M N /_I N I O2t_._ '22

"_-_nWmn)_qIlI5 -_- Z Z A12°_m°_p(_nVmn "4- wmn)wmnI416 + Z Z R 3

m=l n=l m=l n----1

AI N
o 0.5A22

*(vn + flnWn)(Vmn + flnWmn)'_qllI7 -[- Z Z R-"----3--(vmn + _nwmn)3flqlTI12

m=l n=l

hi N 2A66 )a 2 2 R c_m_'n ]

m=l n=l

M N M N

2
*flqWmn[215 -[- E Z l'SAll°_3m°_pRwmw2nI6ll3 -[- Z Z O'SA12°mWmnI216

m--ln=l m--1 n=l

M N M N
0.5A22,

+ E Z -_- [vm= + flnw_n)2IiI3 + Z E 0"SAlla3apRw3mnI13118

m=l n----1 m=l n----1

hi N 2 hi N A66 ,9 [Vmn
"_ Z E All°_mc_pR?'tmnWmnI416- Z E-"R -O:ppn\ -_-flnWmn)UmnI314

m=l n=l m=l n=l

M N M N

_',(AI_ 2A66_a 2 (Vmn
+ Z z..._, R + --'R" _ + flnWm,_)w._w._,_qIsI11- E Z A66c_map

m=l n=l m=l n=l

M N 1. A12 2A66 )a_(v,_ + fl.W_)Wmnflql2is2+ + Z Z + -'-k--
m----1 n=l

i N ( A12 __+ Z Z 7- "_ )O_mOLp(Vn "4- flnWn)(Vmn -_- _nWmn)WmI314
m=l n=l
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F_'_t" (9)hell

cont'd.
m=l n=l

M N _ 2A66,
m=l n=l

M

+E
m=l

M

+E
m=l

n=l

N 1(A12 2A66 ,, 2 2
E 2" R "_- T )[ymn "_ _nWmn)C_mWmn_qI8[ll'

n=l

and the elements of r _,e_=t.1[_ shellJ are given by

M 1 N ]. '_ N
_"_h_"(1) =(n + _°)_O+ _ 2o,,,_ + _ _o(_ + _,_)+ Z o9,_,_,_

m=l n=l n=l

M N M N 1

m=l n=l m=l n=l

AI M N

IT, ext.
r_heU (2) =4(R + wo)Ol + 2(n + wo)Oqo + E 2amOlUmwm + E Z amOlu._,_wm._

m=l m=l n=l

M N

r:_'. )_ot_p + Z ,_,,o_,_I_+ _ _Ot(v. + _w_)_n_h_ll (3) =2(R + wo
m=l n=l

N M N

+ E c_mOl(_v,_ + Wn)W,_,_6mp + Z E _ c_pO(v_n + W_n)I1
n=l m=l n=l

M X 2 M N 2

m=ln=l m=l n=l

M

,_t. (4) =2(R +l'shell

N

+Z
n=l

M

+E
Tft_l

WO)amOlUm(Smp + (2/ + qo)OWm6rnp + E 2amOUrnWmI1
m=l

M N

m=l n=l

N 1

Z sOZn[C_m(II -- I2) + 2C_pI4]um,_Vm.
n=l
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M hi N

Fs ext.
hell (5)=(2/+q0)(Vn + flnWn)O_nq + Z O'mOlflnWmUmn_nq + Z E _mltlmnVrnnZ5

m=l m=l n=l

M hi N

+ Z omOl(vmn + flnWrnn)Um6nq + Z Z _O_ml(flnl5 + flql6)umnWmn
m=l m=l n=l

M

FseZt.
hell (6) =(2/+ qo)(fl. Vn + W,_)O6nq + E ar, Olwmum,_G_q

m=l

M M N

m=l m=l n=l

M N

+ Z Z 3aml[ fl'dzG - 13)+ 2flqls]um,_Vm,_
m=l n=l

rs ext.
hell (7) =(R + Wo )O_mOlWmn_mp_nq + (flnVn + Wn)amOlWm(_mpC_nq

M M

"t- Z (_pOWmWmnll6nq-F Z _ flnO(O:mI4 + O:pI1)WmVrnn(_nq

m=l m=l

N N

1 flqlS)wnVmn_mp+ Z  mtw. ' n o mp+E -
n=l n=l

N N

+ Z c_mlvnvmnIa_rnp + Z _C_mflnl(wnVmnIa + VnWrnnl6)6mp
n=l n=l

N lo M N+ E 5 'ml(flnla + flqls)vnW_6mp + E Z C_p(V_,_la + U'_nI6)I,
n=l m=l n=l

M N

+ Z Z _ fln(_:mI4 + °_:T)/1)(/a + I6)VmnWmn

m=l n=l

_ext.
shell (8) =(Vn + flnWn)_trnOlUmSmp(_nq + (Vmn + flnWrnn)Ol_mp(_nq

N
1

-F _O(Vmn + flnWmn)qO_mp(_nq + E O_mlVnUmnls(_mP
n=l

M M

m=l m----1

M 2 M 1+ Z 5 c_mflnOwmumnI23nq+ Z flnO("mIl-_pZ4)wrnUmn_nq

m=l m=l

hi N
2 1

+ Z -_c_._fl._(DUmW_n;,(_., + Z 5 "ml(fl'J5 + flqZ6)WnUmn_mp
m=l n=l

M N M N

+ Z Z OzmumnvmnIlI5 + Z Z _ Ozm(flnI5 +flqI6)(II + I2)UmnWmn

m=l n=l m=l n=l
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Fs e'rt" (9) =(_nVn + Wn)amOlUm_mp6nq + (/3nVmn + Wmn)Ol_mp_nqhell

10 v

M

+E
m=1

M

+E
m.=l

M

+E
m=l

M

+E
m=l

M

+E
rn=l

M

m=l

N

_O:rn3nOUrnVran[l(_nq + E 30_ml(]_nI3 + /_q'5)Vnltmn(_m p

n----1

N N
2

amOwmumnliSnq + E 5 am/3nlvnumn165mp + E o_mlwnumnlG6mv
n=l n=l

N
1

E "_,2n(amI2 +
rt=l

N

E lfln(OgmIl +

7l--1

/1'/ N

m=l n=l

M N 1

°:pI4)'amnVmnI6 + E E 50_rn/_q(I1 + I2)Umnt'mnI5

m=l n=l

Elements of (2M + 1) x 1 residual force subvector [Rst,-(u_t_)]

(EA)_ M
ns,_ (1) - 21 q_+ _ O.25(EAI_.Lw-L

m=l

M

R,e_ (2) =(EA),a_lu_m_5,mv + E 2 20.5( EA )sama, vw,,j2
m=l

M

2 2

R_t_ (3)=[0.5(EA).qI + (EI)saml]amWsm6m p + E 0"5(EA)"a%avwa_II3
rrt = l

M

+ E (EA)_a_apU.mW.mI4
m=l
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Elements of (2N + 1)> 1 residual force subvector [R_(ff_)]

N (EA)rR_ (1)=2 ®wr0 + Z 2R--_ ®(v_n +/3nWr_)"
n=l

R_ (2) =[(Ed)r (EI)_I_, c (@)_ no(EI)_lR---T-+ _j_.v_o_q_0 + [ + "_-_o_ jg_°_nq

(EA)_ N (EA)_ _ "v
+ ---_o(_,._ + _)wro_ + _ _ ,nat _ + _,_w_)25R5 n=1

N (EA)_. N (EA)r(v_ _ +/_nw_)(/3_v_n + w_-,_)I5
+ Z 2R---To(_ + _w_)_i_ + Z R_

n=l n-=l

R_(3)=_ + ,_--_o j,_,:,vr_o_+ [ + 94 ]O_n_

(EA),. N

+ ._ /3_O(v_ +/3nW_._)W,.o6nq + Z (EA),.
R_ n=l 2R----_° _q(Vrn +/_ntVrn)317

L+ E (EA)_ (EA)_ ,
n= rt=l

The integrals ll to Ils in the elements of the residual force subvectors are given by

l

11 = f Cos2(c_mx)Cos(%x)dx
-I

l

12 = f Sin2(a'rnx)Cos(e_px)dx
-I

0

13 = / Sin2(_nO)Cos(ZqO)dO
-o

1

14 =/Cos(amx)Sin(amx)Sin(_px)dx
-1

0

I5 = / Cos(/3,_O)Sin(/3nO)Sin(_qO)dO
-®
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®

I6 = Co_'(_3_O)Cos(/_qO)dO

-6)

6)

IT = / Sin3(/3_O)Sin(t3qO) dO
-®

®

Is = / Cos2(J3,_O)Sin(/3nO)Sin(3qO) dO
-®

l

19 = / Cos 3(amx)dx
-l

l

• ') t
11o = S,n'(amx)Cos(_mx)dx

-l

l

/11 =/

-l

1

I12 =/cosa(amx)Cos(apx) dz
-l

l

I13 = / Sin a(a mx)Sin(a';x )dx
-l

+®

/.o114 = Szn'(/JnO)Cos(/3nO)dO

-0

l

I15 =/

-t

@

I16 = / cosa(/3,_O)dO

®

117 = / Sin 2(_nO)Cos(flnO)C°s(,_qO)dO

-®

6)

I18 = / Co_3(flnO)C°S(_qO) dO

-®

Sin _(_ ._ x )C os( c,m x )C os( %x )dx

Cos 2(amx )S in( am x )S in( avx )dx
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